问题1:解下列不等式: , , , 问题2.(北京春)若不等式的解集为.则实数等于 问题3. 设.解关于的不等式:≥. 分析:本题是一个含有参数的不等式.解这类不等式时常要就参数的取值进行讨论. 问题4. 已知.≤.且.求实数的范围 问题5. 在一条公路上.每隔有个仓库.共有个仓库.一号仓库存有货物.二号仓库存.五号仓库存.其余两个仓库是空的.现在想把所有的货物放在一个仓库里.如果每吨货物运输需要元运输费.那么最少要多少运费才行? 查看更多

 

题目列表(包括答案和解析)

(2009•金山区二模)设函数f(x)=x2+x.(1)解不等式:f(x)<0;(2)请先阅读下列材料,然后回答问题.
材料:已知函数g(x)=-
1
f(x)
,问函数g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.一个同学给出了如下解答:
解:令u=-f(x)=-x2-x,则u=-(x+
1
2
2+
1
4

当x=-
1
2
时,u有最大值,umax=
1
4
,显然u没有最小值,
∴当x=-
1
2
时,g(x)有最小值4,没有最大值.
请回答:上述解答是否正确?若不正确,请给出正确的解答;
(3)设an=
f(n)
2n-1
,请提出此问题的一个结论,例如:求通项an.并给出正确解答.
注意:第(3)题中所提问题单独给分,.解答也单独给分.本题按照所提问题的难度分层给分,解答也相应给分,如果同时提出两个问题,则就高不就低,解答也相同处理.

查看答案和解析>>

将函数f(x)=|2x+1|-|x-1|写成分段函数的形式,作出其图象后,回答下列两个问题:
(1)解不等式:f(x)>1;
(2)求函数f(x)的最小值.

查看答案和解析>>

设函数f(x)=x2+x.(1)解不等式:f(x)<0;(2)请先阅读下列材料,然后回答问题.
材料:已知函数g(x)=,问函数g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.一个同学给出了如下解答:
解:令u=-f(x)=-x2-x,则u=-(x+2+
当x=-时,u有最大值,umax=,显然u没有最小值,
∴当x=-时,g(x)有最小值4,没有最大值.
请回答:上述解答是否正确?若不正确,请给出正确的解答;
(3)设an=,请提出此问题的一个结论,例如:求通项an.并给出正确解答.
注意:第(3)题中所提问题单独给分,.解答也单独给分.本题按照所提问题的难度分层给分,解答也相应给分,如果同时提出两个问题,则就高不就低,解答也相同处理.

查看答案和解析>>

1、下列问题的算法适宜用条件结构表示的是(  )

查看答案和解析>>

已知二次函数f(x)=x2+x的定义域D 恰是不等式 f(-x)+f(x)≤2|x|的解集,其值域为A.函数 g(x)=x3-3tx+
1
2
t
的定义域为[0,1],值域为B.
(1)求f (x) 的定义域D和值域 A;
(2)(理) 试用函数单调性的定义解决下列问题:若存在实数x0∈(0,1),使得函数 g(x)=x3-3tx+
1
2
t
在[0,x0]上单调递减,在[x0,1]上单调递增,求实数t的取值范围并用t表示x0
(3)(理) 是否存在实数t,使得A⊆B成立?若存在,求实数t 的取值范围;若不存在,请说明理由.
(4)(文) 是否存在负实数t,使得A⊆B成立?若存在,求负实数t 的取值范围;若不存在,请说明理由.
(5)(文) 若函数g(x)=x3-3tx+
1
2
t
在定义域[0,1]上单调递减,求实数t的取值范围.

查看答案和解析>>


同步练习册答案