常见构造条件的变换:加项变换.系数变换.平方变换.拆项变换.常量代换.三角代换等.当使用均值定理时等号不能成立时.应考虑函数的单调性(例如“对号 函数.导数法). 查看更多

 

题目列表(包括答案和解析)

17、构造一个满足下面三个条件的函数实例:
①函数在(-∞,-1)上为减函数;②函数具有奇偶性;③函数有最小值;
这样的函数可以为(只写一个):
f(x)=x2

查看答案和解析>>

(2013•东城区二模)对定义域的任意x,若有f(x)=-f(
1
x
)
的函数,我们称为满足“翻负”变换的函数,下列函数:
y=x-
1
x

②y=logax+1,
y=
x,0<x<1
0,x=1
-
1
x
,x>1

其中满足“翻负”变换的函数是
①③
①③
. (写出所有满足条件的函数的序号)

查看答案和解析>>

我们将点P(x,y)经过矩阵
ab
cd
的变换得到新的点P'(x',y')称作一次运动,即:
x′
y′
=
ab
cd
x
y

(1)若点P(3,4)经过矩阵A=
01
10
变换后得到新的点P',求出点P'的坐标,并指出点P'与点P的位置关系;
(2)若函数f(x)=
1
a
x2+
5
a
(x≥0)的图象上的每一个点经过(1)中的矩阵A变换后,所得到图象对应函数y=g(x),试研究在y=g(x)上是否存在定义域与值域相同的区间[m,n],若存在,求出满足条件的实数a的取值范围;若不存在,说明理由.

查看答案和解析>>

已知数列{an},Sn为其前n项的和,Sn=n-an+9,n∈N*
(1)证明数列{an}不是等比数列;
(2)令bn=an-1,求数列{bn}的通项公式bn
(3)已知用数列{bn}可以构造新数列.例如:{3bn},{2bn+1},{
b
2
n
},{
1
bn
}{2bn},{sinbn}…请写出用数列{bn}构造出的新数列{pn}的通项公式,使数列{pn}满足①②两个条件,并说明理由
①数列{pn}为等差数列;
②数列{pn}的前n项和有最大值.

查看答案和解析>>

(2008•嘉定区一模)设正数数列{an}的前n项和为Sn,且对任意的n∈N*,Sn是an2和an的等差中项.
(1)求数列{an}的通项公式;
(2)在集合M={m|m=2k,k∈Z,且1000≤k<1500}中,是否存在正整数m,使得不等式Sn-1005>
a
2
n
2
对一切满足n>m的正整数n都成立?若存在,则这样的正整数m共有多少个?并求出满足条件的最小正整数m的值;若不存在,请说明理由;
(3)请构造一个与数列{Sn}有关的数列{un},使得
lim
n→∞
(u1+u2+…+un)
存在,并求出这个极限值.

查看答案和解析>>


同步练习册答案