圆锥曲线综合问题包含内部综合.圆锥曲线与其它章节的综合以及运用圆锥曲线解决实际问题前者用到圆锥曲线重要的思想与方法.是高考的热点,圆锥曲线与其它章节的综合要注意各部分知识点的联系.后者要通过建立数学模型.把实际问题转化为数学问题求解. 对于较为综合的解析几何问题.必须对题目的内涵进行深刻挖掘的基础上.应用整体思想.构建转化的“框架 .然后.综合利用代数手段解题. 圆锥曲线的定义是解决综合题的基础.定义在本质上揭示了平面上的动点与定点的距离满足某种特殊关系.从数形结合思想去理解圆锥曲线中的参数(等)的几何意义以及这些参数间的相互关系.进而通过它们之间组成题设条件的转化. 综合题中常常离不开直线与圆锥曲线的位置.因此.要树立将直线与圆锥曲线方程联立.应用判别式.韦达定理的意识. 解析几何应用问题的解题关键是建立适当的坐标系.合理建立曲线模型.然后转化为相应的代数问题作出定量或定性的分析与判断. 查看更多

 

题目列表(包括答案和解析)

已知椭圆(a>b>0),点在椭圆上。

(I)求椭圆的离心率。

(II)设A为椭圆的右顶点,O为坐标原点,若Q在椭圆上且满足|AQ|=|AO|,求直线OQ的斜率的值。

【考点定位】本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面内两点间距离公式等基础知识. 考查用代数方法研究圆锥曲线的性质,以及数形结合的数学思想方法.考查运算求解能力、综合分析和解决问题的能力.

 

查看答案和解析>>

(2009•青浦区二模)(理)已知A、B是抛物线y2=4x上的相异两点.
(1)设过点A且斜率为-1的直线l1,与过点B且斜率为1的直线l2相交于点P(4,4),求直线AB的斜率;
(2)问题(1)的条件中出现了这样的几个要素:已知圆锥曲线Γ,过该圆锥曲线上的相异两点A、B所作的两条直线l1、l2相交于圆锥曲线Γ上一点;结论是关于直线AB的斜率的值.请你对问题(1)作适当推广,并给予解答;
(3)若线段AB(不平行于y轴)的垂直平分线与x轴相交于点Q(x0,0).若x0=5,试用线段AB中点的纵坐标表示线段AB的长度,并求出中点的纵坐标的取值范围.

查看答案和解析>>

(2009•青浦区二模)(文)已知A、B是抛物线y2=4x上的相异两点.
(1)设过点A且斜率为-1的直线l1,与过点B且斜率为1的直线l2相交于点P(4,4),求直线AB的斜率;
(2)问题(1)的条件中出现了这样的几个要素:已知圆锥曲线Γ,过该圆锥曲线上的相异两点A、B所作的两条直线l1、l2相交于圆锥曲线Γ上一点;结论是关于直线AB的斜率的值.请你对问题(1)作适当推广,并给予解答;
(3)若线段AB(不平行于y轴)的垂直平分线与x轴相交于点Q(x0,0).若x0>2,试用x0表示线段AB中点的横坐标.

查看答案和解析>>

(2009•奉贤区二模)已知:点P与点F(2,0)的距离比它到直线x+4=0的距离小2,若记点P的轨迹为曲线C.
(1)求曲线C的方程.
(2)若直线L与曲线C相交于A、B两点,且OA⊥OB.求证:直线L过定点,并求出该定点的坐标.
(3)试利用所学圆锥曲线知识参照(2)设计一个与直线L过定点有关的数学问题,并解答所提问题.

查看答案和解析>>

(12分)圆、椭圆、双曲线都有对称中心,统称为有心圆锥曲线,它们统一的标准方程为.圆的很多优美性质可以类比推广到有心圆锥曲线中,如圆的“垂径定理”的逆定理:圆的平分弦(不是直径)的直径垂直于弦. 类比推广到有心圆锥曲线:已知直线与曲线交于两点,的中点为,若直线(为坐标原点)的斜率都存在,则.这个性质称为有心圆锥曲线的“垂径定理”.

(Ⅰ)证明有心圆锥曲线的“垂径定理”;

(Ⅱ)利用有心圆锥曲线的“垂径定理”解答下列问题:

①     过点作直线与椭圆交于两点,求的中点的轨迹的方程;

②     过点作直线与有心圆锥曲线交于两点,是否存在这样的直线使点为线段的中点?若存在,求直线的方程;若不存在,说明理由.

查看答案和解析>>


同步练习册答案