问题1.求下列数列的极限:, , 问题2.(陕西)等于 (天津)设等差数列的公差是.前项的和为.则 (湖北)已知和是两个不相等的正整数.且≥.则 问题3.若.求和的值, 若.求的取值范围. 问题4.已知数列满足...- . 若.则 已知.数列满足.(.-).且数列的极限存在.则 (结果用表示). 问题5.(福建)如图.连结的各边中点 得到一个新的又连结的各边中点得 到.如此无限继续下去.得到一系列三角形: ...-.这一系列 三角形趋向于一个点.已知 则点的坐标是 查看更多

 

题目列表(包括答案和解析)

精英家教网汉诺塔问题是根据一个传说形成的一个问题:有三根杆子和套在一根杆子上的若干大小不等的穿孔圆盘,按下列规则,把圆盘从一根杆子上全部移到另一根杆子上.
①每次只能移动1个碟片;②大盘不能叠在小盘上面.
如图所示,将A杆上所有碟片移到C杆上,B杆可以作为过渡杆使用,称将碟片从一个杆子移动到另一个标子为移动一次,记将A杆子上的n个碟片移动到C杆上最少需要移动an次.
(Ⅰ)写出a1,a2,a3,a4的值;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=
nan+1
,求数列{bn}的前n项和Sn.

查看答案和解析>>

定义在[1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);
②当2≤x≤4时,f(x)=1-|x-3|.试解答下列问题:
(1)设c>2,方程f(x)=2的根由小到大依次记为a1,a2,a3,…,an,…,试证明:数列a2n-1+a2n为等比数列;
(2)①是否存在常数c,使函数的所有极大值点均落在同一条直线上?若存在,试求出c的所有取值并写出直线方程;若不存在,试说明理由;②是否存在常数c,使函数的所有极大值点均落在同一条以原点为顶点的抛物线上?若存在,试求出c的所有取值并写出抛物线方程;若不存在,试说明理由.

查看答案和解析>>

数列{an}和数列{bn}(n∈N*)由下列条件确定:
(1)a1<0,b1>0;
(2)当k≥2时,ak与bk满足如下条件:当
ak-1+bk-1
2
≥0时,ak=ak-1,bk=
ak-1+bk-1
2
;当
ak-1+bk-1
2
<0时,ak=
ak-1+bk-1
2
,bk=bk-1
解答下列问题:
(Ⅰ)证明数列{ak-bk}是等比数列;
(Ⅱ)记数列{n(bk-an)}的前n项和为Sn,若已知当a>1时,
lim
n→∞
n
an
=0,求
lim
n→∞
Sn

(Ⅲ)m(n≥2)是满足b1>b2>…>bn的最大整数时,用a1,b1表示n满足的条件.

查看答案和解析>>

阅读下面所给材料:已知数列{an},a1=2,an=3an-1+2,求数列的通项an
解:令an=an-1=x,则有x=3x+2,所以x=-1,故原递推式an=3an-1+2可转化为:
an+1=3(an-1+1),因此数列{an+1}是首项为a1+1,公比为3的等比数列.
根据上述材料所给出提示,解答下列问题:
已知数列{an},a1=1,an=3an-1+4,
(1)求数列的通项an;并用解析几何中的有关思想方法来解释其原理;
(2)若记Sn=
n
k=1
1
lg(ak+2)lg(ak+1+2)
,求
lim
n→∞
Sn
(3)若数列{bn}满足:b1=10,bn+1=100bn3,利用所学过的知识,把问题转化为可以用阅读材料的提示,求出解数列{bn}的通项公式bn

查看答案和解析>>

若数列{an}满足:a1=m1,a2=m2,an+2=pan+1+qan(p,q是常数),则称数列{an}为二阶线性递推数列,且定义方程x2=px+q为数列{an}的特征方程,方程的根称为特征根; 数列{an}的通项公式an均可用特征根求得:
①若方程x2=px+q有两相异实根α,β,则数列通项可以写成an=c1αn+c2βn,(其中c1,c2是待定常数);
②若方程x2=px+q有两相同实根α,则数列通项可以写成an=(c1+nc2)αn,(其中c1,c2是待定常数);
再利用a1=m1,a2=m2,可求得c1,c2,进而求得an.根据上述结论求下列问题:
(1)当a1=5,a2=13,an+2=5an+1-6an(n∈N*)时,求数列{an}的通项公式;
(2)当a1=1,a2=11,an+2=2an+1+3an+4(n∈N*)时,求数列{an}的通项公式;
(3)当a1=1,a2=1,an+2=an+1+an(n∈N*)时,记Sn=a1Cn1+a2Cn2+…+anCnn,若Sn能被数8整除,求所有满足条件的正整数n的取值集合.

查看答案和解析>>


同步练习册答案