函数的值域为 若函数在上的最大值与最小值之差为.则 已知(是常数).在上有最大值.那么在上的最小值是 查看更多

 

题目列表(包括答案和解析)

若函数f(x)同时满足下列两个性质,则称其为“规则函数”
①函数f(x)在其定义域上是单调函数;
②在函数f(x)的定义域内存在闭区间[a,b]使得f(x)在[a,b]上的最小值是
a
2
,且最大值是
b
2

请解答以下问题:
(Ⅰ) 判断函数f(x)=x2-2x,(x∈(0,+∞))是否为“规则函数”?并说明理由;
(Ⅱ)判断函数g(x)=-x3是否为“规则函数”?并说明理由.若是,请找出满足②的闭区间[a,b];
(Ⅲ)若函数h(x)=
x-1
+t
是“规则函数”,求实数t的取值范围.

查看答案和解析>>

函数f(x)=
1
1+a•2bx
的定义域为R,且
lim
n→∞
f(-n)=0(n∈N*)
(Ⅰ)求证:a>0,b<0;
(Ⅱ)若f(1)=
4
5
,且f(x)在[0,1]上的最小值为
1
2
,试求f(x)的解析式;
(Ⅲ)在(Ⅱ)的条件下记Sn=f(1)+f(2)+…+f(n)(n∈N),试比较Sn与n+
1
2n+1
+
1
2
(n∈N*)
的大小并证明你的结论.

查看答案和解析>>

函数f(x)=
1-x
ax
+lnx
是[1,+∞)上的增函数.
(Ⅰ)求正实数a的取值范围;
(Ⅱ)若函数g(x)=x2+2x,在使g(x)≥M对定义域内的任意x值恒成立的所有常数M中,我们把M的最大值M=-1叫做f(x)=x2+2x的下确界,若函数f(x)=
1-x
ax
+lnx
的定义域为[1,+∞),根据所给函数g(x)的下确界的定义,求出当a=1时函数f(x)的下确界.
(Ⅲ)设b>0,a>1,求证:ln
a+b
b
1
a+b
.

查看答案和解析>>

函数y=f(x)是定义在区间[a,b]上,值域为[-3,5]的增函数,则下列说法不正确的是(  )

查看答案和解析>>

函数f(x)的定义域为R,并满足以下条件:
①对任意x∈R,有f(x)>0; ②对任意x、y∈R,有f(xy)=[f(x)]y;  ③f(
1
3
)>1

(1)求f(0)的值;
(2)求证:f(x)在R上是单调增函数;
(3)若f(2)=2,且x满足f(
1
2
)≤f(x)≤f(2)
,求函数y=2f(2log2x)+
1
f(2log2x)
的最大值和最小值.

查看答案和解析>>


同步练习册答案