精英家教网 > 高中数学 > 题目详情
函数f(x)=
1-x
ax
+lnx
是[1,+∞)上的增函数.
(Ⅰ)求正实数a的取值范围;
(Ⅱ)若函数g(x)=x2+2x,在使g(x)≥M对定义域内的任意x值恒成立的所有常数M中,我们把M的最大值M=-1叫做f(x)=x2+2x的下确界,若函数f(x)=
1-x
ax
+lnx
的定义域为[1,+∞),根据所给函数g(x)的下确界的定义,求出当a=1时函数f(x)的下确界.
(Ⅲ)设b>0,a>1,求证:ln
a+b
b
1
a+b
.
分析:①当函数单调递增时,其导数大于等于0恒成立求参数的范围
②求下确界就是求函数的最小值利用导数求函数的最值
③证明不等式就是求最值
解答:解:(1)f(x)=
ax-1
ax2

f(x)=
ax-1
ax2
≥0
对x∈[1,+∞)恒成立,
a≥
1
x
对x∈[1,+∞)恒成立
1
x
≤1
∴a≥1答:
正实数a的取值范围为a≥1
(2)由(1)可知a=1时,函数f(x)是定义域[1,+∞)上的增函数,
故f(x)min=f(1)=0,
f(x)≥M恒成立
∴M≤f(x)min=0
∴M的最大值为0,
∴当a=1时函数f(x)的下确界为0.
答:当a=1时函数f(x)的下确界是0
(3)取x=
a+b
b
,∵a>1,b>0,∴
a+b
b
>1

由(1)知f(x)=
1-x
ax
+lnx
在[1,+∞)上是增函数,
f(
a+b
b
)>f(1)=0

1-
a+b
b
a•
a+b
b
+ln
a+b
b
>0

ln
a+b
b
1
a+b
点评:导数的应用①知函数的单调性求参数范围 一般转化成道函数恒大于等于0 或小于等于0
②证明不等式转化成函数的最值,若含着对数或指数一般用导数求最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(
x
-1)=-x
,则函数f(x)的表达式为(  )
A、f(x)=x2+2x+1(x≥0)
B、f(x)=x2+2x+1(x≥-1)
C、f(x)=-x2-2x-1(x≥0)
D、f(x)=-x2-2x-1(x≥-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c(a≠0)满足条件:①当x∈R时,f(x-4)=f(2-x),且x≤f(x)≤
12
(1+x2)
;②f(x)在R上的最小值为0.
(1)求f(1)的值及f(x)的解析式;
(2)若g(x)=f(x)-k2x在[-1,1]上是单调函数,求k的取值范围;
(3)求最大值m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.

查看答案和解析>>

科目:高中数学 来源: 题型:

探究函数f(x)=x+
4
x
,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
请观察表中值y随x值变化的特点,完成以下的问题.
函数f(x)=x+
4
x
(x>0)在区间(0,2)上递减;
函数f(x)=x+
4
x
(x>0)在区间
(2,0)
(2,0)
上递增.
当x=
2
2
时,y最小=
4
4

证明:函数f(x)=x+
4
x
(x>0)在区间(0,2)递减.
思考:(直接回答结果,不需证明)
(1)函数f(x)=x+
4
x
(x<0)有没有最值?如果有,请说明是最大值还是最小值,以及取相应最值时x的值.
(2)函数f(x)=ax+
b
x
,(a<0,b<0)在区间
[-
b
a
,0)
[-
b
a
,0)
 和
(0,
b
a
]
(0,
b
a
]
上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绵阳二模)对于具有相同定义域D的函数f(x)和g(x),若对任意的x∈D,都有|f(x)-g(x)|≤1,则称f(x)和g(x)在D上是“密切函数”.给出定义域均为D={x|1≤x≤3}的四组函数如下:
①f(x)=x2-x+1,g(x)=3x-2
②f(x)=x3+x,g(x)=3x2+x-1
③f(x)=log2(x+1),g(x)=3-x
④f(x)=
3
2
sin(
π
3
x+
π
3
),g(x)=
1
4
cos
π
3
x-
3
4
sin
π
3
x
其中,函数f(x)印g(x)在D上为“密切函数”的是
①④
①④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(
x
-1)=-x
,则函数f(x)的表达式为(  )
A.f(x)=x2+2x+1(x≥0)B.f(x)=x2+2x+1(x≥-1)
C.f(x)=-x2-2x-1(x≥0)D.f(x)=-x2-2x-1(x≥-1)

查看答案和解析>>

同步练习册答案