题目列表(包括答案和解析)
在圆锥曲线的学习中,我们已经学习了它的标准方程,以椭圆
=1(a>b>0)为例说明此方程就是以F1(-c,0),F2(c,0)为焦点,长轴长为2a的椭圆的方程.怎样利用曲线与方程的定义说明上述问题?
| x2 |
| a2 |
| y2 |
| b2 |
| 9y2 |
| 8 |
|
| 2 |
| 3 |
| x2 |
| a2 |
| y2 |
| b2 |
| 2 |
| 3 |
| r1 |
| r2 |
| ||
| 3 |
| x2 |
| 25 |
| y2 |
| 16 |
| |AB| |
| |FM| |
| 10 |
| 3 |
| x2 |
| 25 |
| y2 |
| 16 |
| |AB| |
| |F1M| |
| 10 |
| 3 |
(1)设椭圆
:
与双曲线
:
有相同的焦点
,
是椭圆
与双曲线
的公共点,且
的周长为
,求椭圆
的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆
”的方程为
.设“盾圆
”上的任意一点
到
的距离为
,
到直线
的距离为
,求证:
为定值;
(3)由抛物线弧
:
(
)与第(1)小题椭圆弧
:
(
)所合成的封闭曲线为“盾圆
”.设过点
的直线与“盾圆
”交于
两点,
,
且
(
),试用
表示
;并求
的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com