21.已知函数.过点P(1.0)作曲线的两条切线PM.PN.切点分别为M.N. (1)当t=2时.求函数的单调递减区间, (2)设试求函数的表达式, 的条件下.若对任意的正整数n.在区间内.总存在项数为m+1的数列使得不等式:成立.求m的最大值. 查看更多

 

题目列表(包括答案和解析)

已知函数,过点P(1,0)作曲线y=f(x)的两条切线PM,PN,切点分别为M,N,
(1)当t=2时,求函数f(x)的单调递增区间;
(2)设|MN|=g(t),试求函数g(t)的表达式;
(3)在(2)的条件下,若对任意的正整数n,在区间[2,n+]内,总存在m+1个数a1,a2,....,am
am+1,使得不等式g(a1)+g(a2)+...+g(am)<g(am+1)成立,求m的最大值

查看答案和解析>>

已知函数,过点P(1,0)作曲线y=f(x)的两条切线PM、PN,切点分别为M、N.

(1)当t=2时,求函数f(x)的单调递增区间;

(2)设|MN|=g(t),试求函数g(t)的表达式

(3)在(2)的条件下,若对任意的正整数n,在区间[]内总存在m+1个实数a1,a2,…,am,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.

查看答案和解析>>

已知函数,过点P(1,0)作曲线y=f(x)的两条切线PM,PN,切点分别为M,N.

(1)当t=2时,求函数f(x)的单调递增区间;

(2)设|MN|=g(t),试求函数g(t)的解析式;

(3)在(2)的条件下,若对任意的正整数n,在区间内总存在m+1个实数λ1,λ2……λm,λm+1使得不等式g(λ1)+g(λ2)+…+g(λm)<g(λm+1)成立,求m的最大值.

查看答案和解析>>

已知函数,f(x)=x3+bx2+cx+d在点(0,f(0))处的切线方程为2x-y-1=0.
(1)求实数c,d的值;
(2)若过点P(-1,-3)可作出曲线y=f(x)的三条不同的切线,求实数b的取值范围;
(3)若对任意x∈[1,2],均存在t∈(1,2],使得et-lnt-4≤f(x)-2x,试求实数b的取值范围.

查看答案和解析>>

已知函数,f(x)=x3+bx2+cx+d在点(0,f(0))处的切线方程为2x-y-1=0.
(1)求实数c,d的值;
(2)若过点P(-1,-3)可作出曲线y=f(x)的三条不同的切线,求实数b的取值范围;
(3)若对任意x∈[1,2],均存在t∈(1,2],使得et-lnt-4≤f(x)-2x,试求实数b的取值范围.

查看答案和解析>>


同步练习册答案