1.两个向量的数量积与向量同实数积有很大区别 (1)两个向量的数量积是一个实数.不是向量.符号由cosq的符号所决定, (2)两个向量的数量积称为内积.写成·,今后要学到两个向量的外积×.而×是两个向量的数量的积.书写时要严格区分.符号“· 在向量运算中不是乘号.既不能省略.也不能用“× 代替, (3)在实数中.若a¹0.且a×b=0.则b=0,但是在数量积中.若¹0.且×=0.不能推出=.因为其中cosq有可能为0, (4)已知实数a.b.c(b¹0).则ab=bc Þ a=c.但是×= ×, 如右图:×= |||cosb = |||OA|.×c = ||c|cosa = |||OA|Þ× =×.但 ¹, (5)在实数中.有(×) = (×).但是(×)¹ (×).显然.这是因为左端是与c共线的向量.而右端是与共线的向量.而一般与c不共线. 查看更多

 

题目列表(包括答案和解析)

材料:采访零向量

  W:你好!零向量.我是《数学天地》的一名记者,为了让在校的高中生更好了解你,能不能对你进行一次采访呢?

  零向量:当然可以,我们向量王国随时恭候大家的光临,很乐意接受你的采访,让高中生朋友更加了解我,更好地为他们服务.

  W:好的,那就开始吧!你的名字有什么特殊的含义吗?

  零向量:零向量就是长度为零的向量,它与数字0有着密切的联系,所以用0来表示我.

  W:你与其他向量有什么共同之处呢?

  零向量:既然我是向量王国的一个成员,就具有向量的基本性质,如既有大小又有方向,在进行加、减法运算时满足交换律和结合律,还定义了与实数的积.

  W:你有哪些值得骄傲的特殊荣耀呢?

  零向量:首先,我的方向是不定的,可以与任意的向量平行.其次,我还有其他一些向量所没有的特殊待遇:如我的相反向量仍是零向量;在向量的线性运算中,我与实数0很有相似之处.

  W:你有如此多的荣耀,那么是否还有烦恼之事呢?

  零向量:当然有了,在向量王国还有许多“权利和义务”却大有把我排斥在外之意,如平行向量的定义,向量共线定理,两向量夹角的定义都对我进行了限制.所有这些确实给一些高中生带来了很多苦恼,在此我向大家真诚地说一声:对不起,这不是我的错.但我还是很高兴有这次机会与大家见面.

  W:OK!采访就到这里吧,非常感谢你的合作,再见!

  零向量:Bye!

阅读上面的材料回答下面问题.

应用零向量时应注意哪些问题?

查看答案和解析>>

(2013•天河区三模)设m∈R,在平面直角坐标系中,已知向量
a
=(x+
3
,my)
,向量
b
=(x-
3
,y)
a
b
,动点M(x,y)的轨迹为曲线E.
(I)求曲线E的方程,并说明该方程所表示曲线的形状;
(II) 已知m=
3
4
,F(0,-1),直线l:y=kx+1与曲线E交于不同的两点M、N,则△FMN的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的实数k的值;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案