8.设函数..则对任意.使在为减函数的概率为( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

是定义在上的函数,若存在,使得上单调递增,在上单调递减,则称上的单峰函数,为峰点,包含峰点的区间为含峰区间.  对任意的上的单峰函数,下面研究缩短其含峰区间长度的方法.

  (1)证明:对任意的,若,则为含峰区间;若,则为含峰区间;

  (2)对给定的,证明:存在,满足,使得由(1)所确定的含峰区间的长度不大于

查看答案和解析>>

是定义在上的函数,若存在,使得上单调递增,在上单调递减,则称上的单峰函数,为峰点,包含峰点的区间为含峰区间.  对任意的上的单峰函数,下面研究缩短其含峰区间长度的方法.

(1)证明:对任意的,若,则为含峰区间;若,则为含峰区间;

(2)对给定的,证明:存在,满足,使得由(1)所确定的含峰区间的长度不大于

 

查看答案和解析>>

是定义在上的函数,若存在,使得上单调递增,在上单调递减,则称上的单峰函数,为峰点,包含峰点的区间为含峰区间.  对任意的上的单峰函数,下面研究缩短其含峰区间长度的方法.
(1)证明:对任意的,若,则为含峰区间;若,则为含峰区间;
(2)对给定的,证明:存在,满足,使得由(1)所确定的含峰区间的长度不大于

查看答案和解析>>

是定义在上的函数,用分点

      

将区间任意划分成个小区间,如果存在一个常数,使得和式)恒成立,则称上的有界变差函数.

(1)函数上是否为有界变差函数?请说明理由;

(2)设函数上的单调递减函数,证明:上的有界变差函数;

(3)若定义在上的函数满足:存在常数,使得对于任意的 时,.证明:上的有界变差函数.

查看答案和解析>>

(本小题满分14分)
是定义在上的函数,用分点

将区间任意划分成个小区间,如果存在一个常数,使得和式)恒成立,则称上的有界变差函数.
(1)函数上是否为有界变差函数?请说明理由;
(2)设函数上的单调递减函数,证明:上的有界变差函数;
(3)若定义在上的函数满足:存在常数,使得对于任意的 时,.证明:上的有界变差函数.

查看答案和解析>>


同步练习册答案