题目列表(包括答案和解析)
(本小题满分12分)已知,设命题:函数在上单调递增;命题:不等式对恒成立。若为真命题,为假命题,求实数的取值范围。
(本小题满分12分)
已知点是区域,()内的点,目标函数,的最大值记作.若数列的前项和为,,且点()在直线上.
(Ⅰ)证明:数列为等比数列;
(Ⅱ)求数列的前项和.
(本小题满分12分)已知函数y=|cosx+sinx|.
(1)画出函数在x∈[-,]上的简图;
(2)写出函数的最小正周期和在[-,]上的单调递增区间;试问:当x在R上取何值
时,函数有最大值?最大值是多少?
(3)若x是△ABC的一个内角,且y2=1,试判断△ABC的形状.
(本小题满分12分)已知函数f(x)=x3+x2-2.
(1)设{an}是正数组成的数列,前n项和为Sn,其中a1=3.若点(an,an+12-2an+1)(n∈N*)在函数y=f′(x)的图象上,求证:点(n,Sn)也在y=f′(x)的图象上;
(2)求函数f(x)在区间(a-1,a)内的极值.
(本小题满分12分)已知函数f(x)=;
(Ⅰ)证明:函数f(x)在上为减函数;
(Ⅱ)是否存在负数,使得成立,若存在求出;若不存在,请说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com