148.解答应用型问题时.最基本要求是什么? 审题.找准题目中的关键词.设未知数.列出函数关系式.代入初始条件.注明单位.答. 查看更多

 

题目列表(包括答案和解析)

某体育用品市场经营一批每件进价为40元的运动服,先做了市场调查,得到数据如下表:
销售单价x(元) 60 62 64 66 68
销售量  y(件) 600 580 560 540 520
根据表中数据,解答下列问题:
①建立一个恰当的函数模型,使它能较好地反映销售量y(件)与销售单价x(元)之间的函数关系,并写出这个函数模型的解析式y=f(x);
②试求销售利润z(元)与销售单价x(元)的函数关系式;(销售利润=总销售收入-总进价成本)
③在①②的条件下,当销售单价为多少元时,能获得最大利润?并求出最大利润.

查看答案和解析>>

数列{an}和数列{bn}(n∈N*)由下列条件确定:
(1)a1<0,b1>0;
(2)当k≥2时,ak与bk满足如下条件:当
ak-1+bk-1
2
≥0时,ak=ak-1,bk=
ak-1+bk-1
2
;当
ak-1+bk-1
2
<0时,ak=
ak-1+bk-1
2
,bk=bk-1
解答下列问题:
(Ⅰ)证明数列{ak-bk}是等比数列;
(Ⅱ)记数列{n(bk-an)}的前n项和为Sn,若已知当a>1时,
lim
n→∞
n
an
=0,求
lim
n→∞
Sn

(Ⅲ)m(n≥2)是满足b1>b2>…>bn的最大整数时,用a1,b1表示n满足的条件.

查看答案和解析>>

已知二次函数f(t)=at2-
b
t
+
1
4a
(t∈R)有最大值且最大值为正实数,集合A=
x/
x-a
x
<0
,集合B=
x/x2b2

(1)求A和B;
(2)定义A与B的差集:A-B=
x/x∈A
且x∉B.且x∈A.P(E)为x取自A-B的概率.P(F)为x取自A/B的概率.解答下面问题:
①当a=-3,b=2时,求P(E),P(F)取值?
②设a,b,x均为整数时,写出a与b的三组值,使P(E)=
2
3
,P(F)=
1
3

查看答案和解析>>

如图所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、BA的方向运动,当第二次MF=MN时M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线时,可得△FMN,设动点M、N的速度都是1个单位/秒,M、N运动的时间为t秒.试解答下列问题:
(1)求F、M、N三点共线时t的值;
(2)设△FMN的面积为S,写出S与t的函数关系式.并求出t为何值时S的值最大.
(3)试问t为何值时,△FMN为直角三角形?

查看答案和解析>>

某商店七月份营销一种饮料的销售利润y(万元)与销售量x(万瓶)之间函数关系的图象如图1中折线所示,该商店截止到13日调价时的销售利润为4万元,截止至15日进货时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)
请你根据图象及商店七月份该饮料的所有销售记录提供的信息(图2),解答下列问题:
(1)求销售量x为多少时,销售利润为4万元;
(2)分别求出线段AB与BC所对应的函数关系式;
(3)我们把销售每瓶饮料所获得的利润称为利润率,那么,在OA、AB、BC三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)

查看答案和解析>>


同步练习册答案