能熟练地用定义证明函数的单调性.求反函数.判断函数的奇偶性. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)已知函数是定义在上的奇函数,且

(1)确定函数的解析式;

(2)用定义证明上是增函数;

(3)解不等式.

【解析】第一问利用函数的奇函数性质可知f(0)=0

结合条件,解得函数解析式

第二问中,利用函数单调性的定义,作差变形,定号,证明。

第三问中,结合第二问中的单调性,可知要是原式有意义的利用变量大,则函数值大的关系得到结论。

 

查看答案和解析>>

(2012•崇明县一模)已知函数f(x)=
x2+ax+1
(a∈R).
(1)用定义证明:当a=3时,函数y=f(x)在[1,+∞)上是增函数;
(2)若函数y=f(x)在[1,2]上有最小值-1,求实数a的值.

查看答案和解析>>

已知f(x)=3x,并且f(a+2)=18,g(x)=3ax-4x的定义域为区间[-1,1].
(1)求函数g(x)的解析式;
(2)用定义证明g(x)在[-1,1]上为单调递减函数;
(3)若函数y=f(x)-4和g(x)值域相同,求y=f(x)-4的定义域.

查看答案和解析>>

(Ⅰ)用定义证明函数f(x)=x+
4x
在[2,+∞)上单调递增;
(Ⅱ)用(Ⅰ)的结论求y=f(2x)(x∈[0,3])的最值及相应的x的值.

查看答案和解析>>

设函数f(x)=k×2x-2-x是定义域为R的奇函数.
(1)求k的值,并判断f(x)的单调性(不需要用定义证明);
(2)解不等式f[f(x)]>0;
 (3)设g(x)=4x+4-x-2mf(x)在[1,+∞)上的最小值为-2,求m的值.

查看答案和解析>>


同步练习册答案