凡是“至少 .“唯一 或含有否定词的命题适宜用反证法. 查看更多

 

题目列表(包括答案和解析)

(1)一般地,用pq分别表示原命题的条件和结论,用分别表示pq的否定,于是四种命题的形式就是:?

原命题:若pq(p q);?

否命题:若          (     );?

逆命题:若          (     );?

逆否命题:若          (     ).?

(2)四种命题的关系?

  ?

注意:①一个命题和它的逆否命题同真假,而与它的其他三个命题的真假无此规律.?

②要严格区别命题的否定与否命题之间的差别.?

对一个命题进行否定,就要对正面叙述的词语进行否定,而否命题既否定条件又否定结论.例如,原命题“若∠A=∠B,则a=b”的否定形式为“若∠A=∠B,则ab”,而其否命题则为“若∠A≠∠B,则ab”.?

(3)反证法?

①定义:          .?

②使用反证法的条件.?

(ⅰ)直接证困难较大时;?

(ⅱ)当待证命题的结论中出现“不可能”“不是”“至少”“至多”“唯一”等限制性很强的条件时.?

③一般步骤:?

(ⅰ)          ;?

(ⅱ)          .

查看答案和解析>>

若对于定义在R上的函数f(x),其函数图象是连续不断,且存在常数λ(λ∈R),使得f(x+λ)+λf(x)=0对任意的实数x成立,则称f(x)是λ-伴随函数.有下列关于λ-伴随函数的结论:
①f(x)=0是常数函数中唯一一个λ-伴随函数;
②f(x)=x2是一个λ-伴随函数;
12
-
伴随函数至少有一个零点.
其中不正确的结论的序号是
 
.(写出所有不正确结论的序号)

查看答案和解析>>

定义域是R的函数y=f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,则称f(x)是一个“λ的相关函数”.有下列关于“A的相关函数”的结论:
①f(x)=0是常数函数中唯一一个“λ的相关函数“;
②f(x)=x2是一个“λ的相关函数“;
③“2的相关函数”至少有一个零点.
其中正确结论的个数是(  )
A、1B、2C、3D、0

查看答案和解析>>

设S是至少含有两个元素的集合.在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素a*b与之对应).若对于任意的a,b∈S,有a*(b*a)=b,则对任意的a,b∈S,下列等式中不能成立的是(  )

查看答案和解析>>

设S是至少含有两个元素的集合,在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素a*b与之对应).已知对任意的a,b∈S,有a*(b*a)=b;则对任意的a,b∈S,给出下面四个等式:
(1)(a*b)*a=a  (2)[a*(b*a)]*(a*b)=a   (3)b*(a*b)=a  (4)(a*b)*[b*(a*b)]=b  
上面等式中恒成立的有(  )

查看答案和解析>>


同步练习册答案