答案:B 解法一:设A(x1.y1).B(x2.y2).AB所在直线方程为y=k(x-).则=x1x2+y1y2.又.得k2x2-(k2+2)x+=0.∴x1·x2=.而y1y2=k(x1-)k(x2-)=k2(x1-)(x2-)=-1.∴x1x2+y1y2=-1=-. 解法二:因为直线AB是过焦点的弦.所以y1·y2=-p2=-1.x1·x2同上. 评述:本题考查向量的坐标运算.及数形结合的数学思想. 查看更多

 

题目列表(包括答案和解析)

设f(x)=cosax+bx+2cx(x∈R),a,b,c∈R且为常数.若存在一公差大于0的等差数列{xn}(n∈N*),使得{f(xn)}为一公比大于1的等比数列,请写出满足条件的一组a,b,c的值
a=kπ+
π
2
(k∈Z)
,b=0,c=1
a=kπ+
π
2
(k∈Z)
,b=0,c=1
.(答案不唯一,一组即可)

查看答案和解析>>

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

设f(x)=cosax+bx+2cx(x∈R),a,b,c∈R且为常数.若存在一公差大于0的等差数列{xn}(n∈N*),使得{f(xn)}为一公比大于1的等比数列,请写出满足条件的一组a,b,c的值    .(答案不唯一,一组即可)

查看答案和解析>>

已知直三棱柱中, , , 的交点, 若.

(1)求的长;  (2)求点到平面的距离;

(3)求二面角的平面角的正弦值的大小.

【解析】本试题主要考查了距离和角的求解运用。第一问中,利用ACCA为正方形, AC=3

第二问中,利用面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD=,第三问中,利用三垂线定理作二面角的平面角,然后利用直角三角形求解得到其正弦值为

解法一: (1)连AC交AC于E, 易证ACCA为正方形, AC=3 ……………  5分

(2)在面BBCC内作CDBC, 则CD就是点C平面ABC的距离CD= … 8分

(3) 易得AC面ACB, 过E作EHAB于H, 连HC, 则HCAB

CHE为二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小为 ……… 12分

解法二: (1)分别以直线CB、CC、CA为x、y为轴建立空间直角坐标系, 设|CA|=h, 则C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h)  ……… 4分

·=0,  h=3

(2)设平面ABC得法向量=(a, b, c),则可求得=(3, 4, 0) (令a=3)

点A到平面ABC的距离为H=||=……… 8分

(3) 设平面ABC的法向量为=(x, y, z),则可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小满足cos== ………  11分

二面角C-AB-C的平面角的正弦大小为

 

查看答案和解析>>

(2014•泸州一模)在△ABC中,角A、B、C的对边分别为a、b、c,设S为△ABC的面积,满足4S=
3
(a2+b2-c2)

(Ⅰ)求角C的大小;
(Ⅱ)若1+
tanA
tanB
=
2c
b
,且
AB
BC
=-8
,求c的值.

查看答案和解析>>


同步练习册答案