26.解:(1)由已知.得.. . . .············································································································ 设过点的抛物线的解析式为. 将点的坐标代入.得. 将和点的坐标分别代入.得 ··································································································· 解这个方程组.得 故抛物线的解析式为.··························································· (2)成立.························································································· 点在该抛物线上.且它的横坐标为. 点的纵坐标为.······················································································· 设的解析式为. 将点的坐标分别代入.得 解得 的解析式为.········································································ ..··························································································· 过点作于点. 则. . . 又. . . .··········································································································· . (3)点在上...则设. ... ①若.则. 解得..此时点与点重合. .··········································································································· ②若.则. 解得 ..此时轴. 与该抛物线在第一象限内的交点的横坐标为1. 点的纵坐标为. .······································································································· ③若.则. 解得..此时.是等腰直角三角形. 过点作轴于点. 则.设. . . 解得. .··········································· 综上所述.存在三个满足条件的点. 即或或. 26.如图.已知抛物线经过点.抛物线的顶点为.过作射线.过顶点平行于轴的直线交射线于点.在轴正半轴上.连结. (1)求该抛物线的解析式, (2)若动点从点出发.以每秒1个长度单位的速度沿射线运动.设点运动的时间为.问当为何值时.四边形分别为平行四边形?直角梯形?等腰梯形? (3)若.动点和动点分别从点和点同时出发.分别以每秒1个长度单位和2个长度单位的速度沿和运动.当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为.连接.当为何值时.四边形的面积最小?并求出最小值及此时的长. *26.解:(1)抛物线经过点. ·························································································· 1分 二次函数的解析式为:·················································· 3分 (2)为抛物线的顶点过作于.则. ··················································· 4分 当时.四边形是平行四边形 ················································ 5分 当时.四边形是直角梯形 过作于.则 (如果没求出可由求) ····························································································· 6分 当时.四边形是等腰梯形 综上所述:当.5.4时.对应四边形分别是平行四边形.直角梯形.等腰梯形.·· 7分 及已知.是等边三角形 则 过作于.则········································································· 8分 =·································································································· 9分 当时.的面积最小值为··································································· 10分 此时 ······················································ 11分 查看更多

 

题目列表(包括答案和解析)

已知四边形ABCD中,P是对角线BD上的一点,过P作MN∥AD,EF∥CD,分别交AB、CD、AD、BC于点M、N、E、F,设a=PM•PE,b=PN•PF,解答下列问题:
(1)当四边形ABCD是矩形时,见图1,请判断a与b的大小关系,并说明理由;
(2)当四边形ABCD是平行四边形,且∠A为锐角时,见图2,(1)中的结论是否成立?并说明理由;
(3)在(2)的条件下,设
BP
PD
=k
,是否存在这样的实数k,使得
S平行四边形PEAM
S△ABD
=
4
9
?若存在,请求出满足条件的所有k的值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

已知:在平面直角坐标系xOy中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,点A在点B的左侧,若抛物线的对称轴为x=1,点A的坐标为(-1,0).
(1)求这个二次函数的解析式;
(2)设抛物线的顶点为C,抛物线上一点D的坐标为(-3,12),过点B、D的直线与抛物线的对称轴交于点E.问:是否存在这样的点F,使得以点B、C、E、F为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,请说明理由;
(3)在(2)的条件下,若在BD上存在一点P,使得直线AP将四边形ACBD分成了面积相等的两部分,请你求出此时点P的坐标.

查看答案和解析>>

已知:在平面直角坐标系xOy中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,点A在点B的左侧,若抛物线的对称轴为x=1,点A的坐标为(-1,0).
(1)求这个二次函数的解析式;
(2)设抛物线的顶点为C,抛物线上一点D的坐标为(-3,12),过点B、D的直线与抛物线的对称轴交于点E.问:是否存在这样的点F,使得以点B、C、E、F为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,请说明理由;
(3)在(2)的条件下,若在BD上存在一点P,使得直线AP将四边形ACBD分成了面积相等的两部分,请你求出此时点P的坐标.

查看答案和解析>>

已知:在平面直角坐标系xOy中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,点A在点B的左侧,若抛物线的对称轴为x=1,点A的坐标为(-1,0).
(1)求这个二次函数的解析式;
(2)设抛物线的顶点为C,抛物线上一点D的坐标为(-3,12),过点B、D的直线与抛物线的对称轴交于点E.问:是否存在这样的点F,使得以点B、C、E、F为顶点的四边形是平行四边形?若存在,求出点F的坐标;若不存在,请说明理由;
(3)在(2)的条件下,若在BD上存在一点P,使得直线AP将四边形ACBD分成了面积相等的两部分,请你求出此时点P的坐标.

查看答案和解析>>

已知抛物线yx2+4xm(m为常数)经过点(0,4).

(1)求m的值;

(2)将该抛物线先向右、再向下平移得到另一条抛物线.已知平移后的抛物线满足下述两个条件:它的对称轴(设为直线l2)与平移前的抛物线的对称轴(设为直线l1)关于y轴对称;它所对应的函数的最小值为-8.

①试求平移后的抛物线的解析式;

②试问在平移后的抛物线上是否存在点P,使得以3为半径的圆P既与x轴相切,又与直线l2相交?若存在,请求出点P的坐标,并求出直线l2被圆P所截得的弦AB的长度;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案