证明:连结AB 在△ADB与△ACB中∴△ADB≌△ACB∴OC=OD. 查看更多

 

题目列表(包括答案和解析)

如图,AC、BD交于点E,AD=BC,∠C=∠D,求证:AC=BD.

证明:连结AB

在△ABD和△BAC中

∴△ABD≌△BAC,∴AC=BD.

回答下列问题:

①上述证明过程是否有错,若有错,指出错在什么地方?并写出正确的证明过程.

③上述证明过程,充分说明,证明两个三角形全等,不能用________这个假命题,也就是说________两三角形不一定全等.

查看答案和解析>>

如图,在等边△ABC中,点D为AC上一点,连结AB,BD,BC分别相交于点E,P,F,且∠BPF=60°
(1)写出图中所有与△BPF相似的三角形,并选择其中一对给予证明;
(2)探究:当BD什么条件时(其它条件不变),PF=
12
PE?请写出探究结果,并说明理由.(说明:结论中不得含有未标识的字母)

查看答案和解析>>

先填写完成第(1)小题中的空缺部分(数学表达式或理由),再按要求解答第(2)小题.
如图:AD=CB,AE⊥BD,CF⊥BD,垂足分别是E、F,DF=BE.
(1)求证:∠D=∠B;
(2)请你连结AB、CD,探究AB与CD有何位置关系?并证明你的结论.
证明:(1)∵AE⊥BD,CF⊥BD,
∴∠AED=∠
CFB
CFB
=90°,
∵DF=BE,
∴DF-
EF
EF
=BE-
EF
EF

即DE=BF.
在Rt△ADE和Rt△CBF中,
方程组:
∴Rt△ADE≌Rt△CBF
HL
HL

∴∠D=∠B
全等三角形的对应角相等
全等三角形的对应角相等

(2)

查看答案和解析>>

我们知道,利用三角形全等可以证明两条线段相等.但是我们会碰到这样的“和差”问题:“如图①,AD为△ABC的高,∠ABC=2∠C,证明:CD=AB+BD”.我们可以用“截长、补短”的方法将这类问题转化为证明两条线段相等的问题:在CD上截取DE=BD,连结AE.
(1)请补写完这个证明:
(2)运用上述方法证明:如图②,AD平分∠BAC,∠ABC=2∠C,证明:BD=AC-AB.

查看答案和解析>>

多彩数学,所有三角形都是等腰三角形
下面的推理过程,请你指出其错误之处.如图:△ABC中,∠BAC的平分线和BC边的垂直平分线相交于D,过点D作DM⊥AB于M,DN⊥AC于N.求证:AB=AC.
证明:连结BD、CD.
∵DM⊥AB,∴∠DMA=90°.∵DN⊥AC,∴∠AND=90°.∴∠AMD=∠AND=90°.又AD平分∠BAC,∴∠1=∠2.又∵AD=AD,∵△ADM≌△ADN(AAS),∴AM=AN,DM=DN.∵DE垂直平分BC,∴DB=DC.在Rt△BDM与Rt△CDN中,
BD=CD
DM=DN
∴Rt△BDM≌Rt△CDN(HL),∴BM=CN.又∵AM=AN,∴AB=AC,∴△ABC一定是等腰三角形.你认为对吗?
分三种情况:
(1)AB=AC时成立;
(2)AB>AC时,N在AC的延长线上;
(3)AB<AC时,M在AB的延长线上.

查看答案和解析>>


同步练习册答案