已知直线AB∥CD,直线EF与AB、CD分别相交于点E、F.
(1)如图1,若∠1=60°,求∠2、∠3的度数;
(2)若点P是平面内的一个动点,连结PE、PF,探索∠EPF、∠PEB、∠PFD三个角之间的关系:
①当点P在图2的位置时,可得∠EPF=∠PEB+∠PFD;
请阅读下面的解答过程,并填空(理由或数学式).
解:如图2,过点P作MN∥AB,
则∠EPM=∠PEB
(两直线平行,内错角相等)
(两直线平行,内错角相等)
∵AB∥CD(已知),MN∥AB(作图),
∴MN∥CD
(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)
(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)
∴∠MPF=∠PFD
(两直线平行,内错角相等)
(两直线平行,内错角相等)
∴
∠EPM+∠FPM
∠EPM+∠FPM
=∠PEB+∠PFD(等式的性质)
即∠EPF=∠PEB+∠PFD.
②当点P在图3的位置时,请直接写出∠EPF、∠PEB、∠PFD三个角之间的关系:
∠EPF+∠PEB+∠PFD=360°
∠EPF+∠PEB+∠PFD=360°
;
③当点P在图4的位置时,请直接写出∠EPF、∠PEB、∠PFD三个角之间的关系:
∠EPF+∠PFD=∠PEB
∠EPF+∠PFD=∠PEB
.