(二)互动交流.探求新知. 1. 观察数据.体会模型. 教师引导学生观察例1表格中三种方案的数量变化情况.体会三种函数的增长差异.说出自己的发现.并进行交流. 2. 作出图象.描述特点. 教师引导学生借助计算器作出三个方案的函数图象.分析三种方案的不同变化趋势.并进行描述.为方案选择提供依据. 查看更多

 

题目列表(包括答案和解析)

(2009•闵行区二模)(理)在长方体ABCD-A1B1C1D1中,AB=2,AD=1,AA1=1,点E在棱AB上移动.
(1)探求AE等于何值时,直线D1E与平面AA1D1D成45°角;
(2)点E移动为棱AB中点时,求点E到平面A1DC1的距离.

查看答案和解析>>

(2012•江苏二模)如图,已知椭圆C:
x2
4
+y2=1
,A、B是四条直线x=±2,y=±1所围成的两个顶点.
(1)设P是椭圆C上任意一点,若
OP
=m
OA
+n
OB
,求证:动点Q(m,n)在定圆上运动,并求出定圆的方程;
(2)若M、N是椭圆C上两个动点,且直线OM、ON的斜率之积等于直线OA、OB的斜率之积,试探求△OMN的面积是否为定值,说明理由.

查看答案和解析>>

已知定义在R上的二次函数R(x)=ax2+bx+c满足2R(-x)-2R(x)=0,且R(x)的最小值为0,函数h(x)=lnx,又函数f(x)=h(x)-R(x).
(I)求f(x)的单调区间;  
(II)当a≤
1
2
时,若x0∈[1,3],求f(x0)的最小值;
(III)若二次函数R(x)图象过(4,2)点,对于给定的函数f(x)图象上的点A(x1,y1),当x1=
3
2
时,探求函数f(x)图象上是否存在点B(x2,y2)(x2>2),使A、B连线平行于x轴,并说明理由.(参考数据:e=2.71828…)

查看答案和解析>>

对某班学生是更喜欢体育还是更喜欢文娱进行调查,根据调查得到的数据,所绘制的二维条形图如图.
(I)根据图中数据,制作2×2列联表;
(II)若要从更喜欢体育的学生中随机选3人,组成体育爱好者交流小组,去外校参观学习,求小组中含女生人数的分布列和期望.

查看答案和解析>>

已知定义在R上的二次函数R(x)=ax2+bx(a>0)是偶函数,函数f(x)=2lnx-R(x).
(I)求f(x)的单调区间;  
(II)当a≤1时,若x0∈[1,2],求f(x0)的最大值;
(III)若二次函数R(x)图象过(1,1)点,对于给定的函数f(x)图象上的点A(x1,y1),当x1=
1e
时,探求函数f(x)图象上是否存在点B(x2,y2)(x2>1),使A、B连线平行于x轴,并说明理由.(参考数据:e=2.71828…)

查看答案和解析>>


同步练习册答案