4.已知:a.b是实数.则a>0且b>0是“>0且ab>0 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 查看更多

 

题目列表(包括答案和解析)

已知:a、b是实数,则a>0且b>0是“>0且ab>0”的(    )

A.充分而不必要条件                   B.必要而不充分条件

C.充分必要条件                       D.既不充分也不必要条件

 

查看答案和解析>>

6、已知a1,a2,a3为一等差数列,b1,b2,b3为一等比数列,
且这6个数都为实数,则下面四个结论:
①a1<a2与a2>a3可能同时成立;
②b1<b2与b2>b3可能同时成立;
③若a1+a2<0,则a2+a3<0;
④若b1•b2<0,则b2•b3<0其中正确的是(  )

查看答案和解析>>

已知函数f(x)的定义域为R,若存在常数m>0,对任意x∈R,有|f(x)|<m|x|,则称f(x)为F函数.给出下列函数:
①f(x)=x2
②f(x)=sinx+cosx;
f(x)=
x
x2+x+1

④f(x)是定义在R上的奇函数,且满足对一切实数x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.
其中是F函数的序号为(  )
A、②④B、①③C、③④D、①②

查看答案和解析>>

已知f(x)=a2x-
1
2
x3,x∈(-2,2)为正常数.
(1)可以证明:定理“若a、b∈R*,则
a+b
2
ab
(当且仅当a=b时取等号)”推广到三个正数时结论是正确的,试写出推广后的结论(无需证明);
(2)若f(x)>0在(0,2)上恒成立,且函数f(x)的最大值大于1,求实数a的取值范围,并由此猜测y=f(x)的单调性(无需证明);
(3)对满足(2)的条件的一个常数a,设x=x1时,f(x)取得最大值.试构造一个定义在D={x|x>-2,且x≠4k-2,k∈N}上的函数g(x),使当x∈(-2,2)时,g(x)=f(x),当x∈D时,g(x)取得最大值的自变量的值构成以x1为首项的等差数列.

查看答案和解析>>

已知函数f(x)=|1-
1x
|,(x>0)
(1)当0<a<b,且f(a)=f(b)时,求证:a+b=2ab
(2)是否存在实数a,b(a<b),使得函数y=f(x)的定义域、值域都是[a,b]?若存在,则求出a,b的值,若不存在,请说明理由.

查看答案和解析>>


同步练习册答案