例2. 若.则( ) A. B. C. D. 解:取.很容易得到答案为D. 点拨:特例法就是用符合已知条件的特例或考虑特殊情况.特殊位置.检验选择支或化简已知条件.得出答案.当已知条件中有范围时可考虑使用特例法. 查看更多

 

题目列表(包括答案和解析)

反比例函数中系数k的几何意义

  反比例函数y=(k≠0)任取一点M(a,b),过M作MA⊥x轴,MB⊥y轴,所得矩形OAMB的面积为S=MA·MB=|b|·|a|=|ab|.又因为b=,故ab=k,所以S=|k|(如图(1)).

  这就是说,过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.这就是k的几何意义,会给解题带来方便.现举例如下:

  例1:如(2)图,已知点P1(x1,y1)和P2(x2,y2)都在反比例函数y=(k<0)的图像上,试比较矩形P1AOB与矩形P2COD的面积大小.

  解答:=|k|

  =|k|

  故

  例2:如图(3),在y=(x>0)的图像上有三点A、B、C,经过三点分别向x轴引垂线,交x轴于A1、B1、C1三点,连结OA、OB、OC,记△OAA1、△OBB1、△OCC1的面积分别为S1、S2、S3,则有(  )

  A.S1=S2=S3

  B.S1<S2<S3

  C.S3<S1<S2

  D.S1>S2>S3

  解答:∵|k|=

  |k|=

  |k|=

  S1=S2=S3,故选A.

  例3:一个反比例函数在第三象限的图像如图(4)所示,若A是图像任意一点,AM⊥x轴,垂足为M,O是原点,如果△AOM的面积是3,那么这个反比例函数的解析式是________.

  解答:∵S△AOM|k|

  又S△AOM=3,

  ∴|k|=3,|k|=6

  ∴k=±6

  又∵曲线在第三象限

  ∴k>0∴k=6

  ∴所以反比例函数的解析式为y=

  根据是述意义,请你解答下题:

  如图(5),过反比例函数y=(x>0)的图像上任意两点A、B分别作轴和垂线,垂足分别为C、D,连结OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得

[  ]

A.S1>S2

B.S1=S2

C.S1<S2

D.大小关系不能确定

查看答案和解析>>

先阅读下面例题的解法,然后解答后面的问题.
例:若多项式2x3-x2+m分解因式的结果中有因式2x+1,求实数m的值.
解:设2x3-x2+m=(2x+1)•A  (A为整数)
  若2x3-x2+m=(2x+1)•A=0,则2x+1=0或A=0
  由2x+1=0得x=-数学公式
  则x=-数学公式是方程2x3-x2+m=0的解
  所以2×(-数学公式3-(-数学公式2+m=0,即-数学公式-数学公式+m=0,所以m=数学公式
问题:
(1)若多项式x2+px-6分解因式的结果中有因式x-3,则实数P=______;
(2)若多项式x3+5x2+7x+q分解因式的结果中有因式x+1,求实数q的值;
(3)若多项式x4+mx3+nx-16分解因式的结果中有因式(x-1)和(x-2),求实数m、n的值.

查看答案和解析>>

以下可以来证明命题“若a>b,则|a|>|b|”是假命题的反例的是(  )

查看答案和解析>>

下列选项中,可以用来证明命题“若a2>4,则a>2”是假命题的反例是(  )

查看答案和解析>>

8、“若x是实数,则x2>0”.能证明此命题是假命题的反例是(  )

查看答案和解析>>


同步练习册答案