(2)当时..在.若.则.若则.故是函数在区间上的唯一的极小值点.也就是最小值点.故, 查看更多

 

题目列表(包括答案和解析)

已知m>1,直线,椭圆C:分别为椭圆C的左、右焦点.

(Ⅰ)当直线过右焦点时,求直线的方程;

(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.[

【解析】第一问中因为直线经过点,0),所以,得.又因为m>1,所以,故直线的方程为

第二问中设,由,消去x,得

则由,知<8,且有

由题意知O为的中点.由可知从而,设M是GH的中点,则M().

由题意可知,2|MO|<|GH|,得到范围

 

查看答案和解析>>

已知曲线C:(m∈R)

(1)   若曲线C是焦点在x轴点上的椭圆,求m的取值范围;

(2)     设m=4,曲线c与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线c交于不同的两点M、N,直线y=1与直线BM交于点G.求证:A,G,N三点共线。

【解析】(1)曲线C是焦点在x轴上的椭圆,当且仅当解得,所以m的取值范围是

(2)当m=4时,曲线C的方程为,点A,B的坐标分别为

,得

因为直线与曲线C交于不同的两点,所以

设点M,N的坐标分别为,则

直线BM的方程为,点G的坐标为

因为直线AN和直线AG的斜率分别为

所以

,故A,G,N三点共线。

 

查看答案和解析>>

已知函数.(

(1)若在区间上单调递增,求实数的取值范围;

(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.

【解析】第一问中,首先利用在区间上单调递增,则在区间上恒成立,然后分离参数法得到,进而得到范围;第二问中,在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.然后求解得到。

解:(1)在区间上单调递增,

在区间上恒成立.  …………3分

,而当时,,故. …………5分

所以.                 …………6分

(2)令,定义域为

在区间上,函数的图象恒在曲线下方等价于在区间上恒成立.   

        …………9分

① 若,令,得极值点

,即时,在(,+∞)上有,此时在区间上是增函数,并且在该区间上有,不合题意;

,即时,同理可知,在区间上递增,

,也不合题意;                     …………11分

② 若,则有,此时在区间上恒有,从而在区间上是减函数;

要使在此区间上恒成立,只须满足

由此求得的范围是.        …………13分

综合①②可知,当时,函数的图象恒在直线下方.

 

查看答案和解析>>

已知函数为实数).

(Ⅰ)当时,求的最小值;

(Ⅱ)若上是单调函数,求的取值范围.

【解析】第一问中由题意可知:. ∵ ∴  ∴.

时,; 当时,. 故.

第二问.

时,,在上有递增,符合题意;  

,则,∴上恒成立.转化后解决最值即可。

解:(Ⅰ) 由题意可知:. ∵ ∴  ∴.

时,; 当时,. 故.

(Ⅱ) .

时,,在上有递增,符合题意;  

,则,∴上恒成立.∵二次函数的对称轴为,且

  .   综上

 

查看答案和解析>>

求证:在△ABC中,若∠C是直角,则∠B一定是锐角.

证明:假设___________,则∠B是直角或钝角.

(1)当∠B是直角时,因为∠C是直角,所以∠B+∠C=180°,与三角形的内角和定理矛盾.

(2)当∠B为钝角时,∠B+∠C>180°,同理矛盾.故___________,原命题成立.

查看答案和解析>>


同步练习册答案