正解:由题意得.所以向量与的夹角为.故选(). 查看更多

 

题目列表(包括答案和解析)

附加题(10分)如图,△ABO的顶点Ax轴正半轴上,顶点B在第一象限内,又知△ABO的面积为2
(I)若向量的夹角为,求实数m的取值范围;

(II)若点B在抛物线y=ax2(a>0)上,并且||=b,

m=(-1)b2,求使||取最小值时实数a的值.

查看答案和解析>>

如图所示的长方体中,底面是边长为的正方形,的交点,是线段的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)求二面角的大小.

【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用,又平面平面,∴平面,又,∴平面. 可得证明

(3)因为∴为面的法向量.∵

为平面的法向量.∴利用法向量的夹角公式,

的夹角为,即二面角的大小为

方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接,则点

,又点,∴

,且不共线,∴

平面平面,∴平面.…………………4分

(Ⅱ)∵

,即

,∴平面.   ………8分

(Ⅲ)∵,∴平面

为面的法向量.∵

为平面的法向量.∴

的夹角为,即二面角的大小为

 

查看答案和解析>>

如图,在三棱柱中,侧面为棱上异于的一点,,已知,求:

(Ⅰ)异面直线的距离;

(Ⅱ)二面角的平面角的正切值.

【解析】第一问中,利用建立空间直角坐标系

解:(I)以B为原点,分别为Y,Z轴建立空间直角坐标系.由于,

在三棱柱中有

,

侧面,故. 因此是异面直线的公垂线,则,故异面直线的距离为1.

(II)由已知有故二面角的平面角的大小为向量的夹角.

 

查看答案和解析>>

已知向量
m
=(1,1)
,向量
n
与向量
m
的夹角为
4
,且
n
m
=-1

(1)求向量
n
的坐标;
(2)若向量
n
与向量
i
的夹角为
π
2
,向量
p
=(x2a2),
q
=(a2,x)
,求关于x的不等式(
p
+
n
)•
q
<1
的解集.

查看答案和解析>>

,其中x∈R.
(1)若的夹角为钝角,求x的取值范围;
(2)解关于x的不等式

查看答案和解析>>

一、选择题

1.B  2.A  3.C  4.C  5.A6.D 7.C10.B11.C

w.w.w.k.s.5.u.c.o.m

 


同步练习册答案