题目列表(包括答案和解析)
![]()
在△ABC中,角A、B、C的对边分别为a、b、c,向量
=(sinA,b+c),
=(a-c,sinC-sinB),满足
=![]()
(Ⅰ)求角B的大小;
(Ⅱ)设
=(sin(C+
),
),
=(2k,cos2A) (k>1),
有最大值为3,求k的值.
【解析】本试题主要考查了向量的数量积和三角函数,以及解三角形的综合运用
第一问中由条件|p +q |=| p -q |,两边平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,
即
,又由余弦定理
=2acosB,所以cosB=
,B=![]()
第二问中,m=(sin(C+
),
),n=(2k,cos2A) (k>1),m·n=2ksin(C+
)+
cos2A=2ksin(C+B) +
cos2A
=2ksinA+
-
=-
+2ksinA+
=-
+
(k>1).
而0<A<
,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-
=3,得k=
.
已知![]()
R
.
(1)求函数
的最大值,并指出此时
的值.
(2)若
,求
的值.
【解析】本试题主要考查了三角函数的性质的运用。(1)中,三角函数先化简
=
,然后利用
是,函数取得最大值
(2)中,结合(1)中的结论,然后由![]()
得
,两边平方得
即
,因此![]()
如图
⊥平面
,
⊥
,过
做![]()
的垂线,垂足为
,过
做
的垂线,垂足为
,求证
⊥
。以下是证明过程:
要证
⊥
只需证
⊥平面![]()
只需证
⊥
(因为
⊥
)
只需证
⊥平面![]()
只需证 ① (因为
⊥
)
只需证
⊥平面![]()
只需证 ② (因为
⊥
)
由只需证
⊥平面
可知上式成立
所以
⊥![]()
把证明过程补充完整① ②
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com