设与椭圆C交点为 查看更多

 

题目列表(包括答案和解析)

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,双曲线
x2
a2
-
y2
b2
=1
两渐近线为l1、l2,过椭圆C的右焦点F作直线l,使l⊥l1,又设l与l2交于点P,l与C两交点自上而下依次为A、B;
(1)当l1与l2夹角为
π
3
,双曲线焦距为4时,求椭圆C的方程及其离心率;
(2)若
FA
AP
,求λ的最小值.

查看答案和解析>>

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右顶点的坐标分别为A(-2,0),B(2,0),离心率e=
1
2

(Ⅰ)求椭圆C的方程:
(Ⅱ)设椭圆的两焦点分别为F1,F2,点P是其上的动点,
(1)当△PF1F2内切圆的面积最大时,求内切圆圆心的坐标;
(2)若直线l:y=k(x-1)(k≠0)与椭圆交于M、N两点,证明直线AM与直线BN的交点在直线x=4上.

查看答案和解析>>

椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),A1、A2、B1、B2分别为椭圆C的长轴与短轴的端点.
(1)设点M(x0,0),若当且仅当椭圆C上的点P在椭圆长轴顶点A1、A2处时,|PM|取得最大值与最小值,求x0的取值范围;
(2)若椭圆C上的点P到焦点距离的最大值为3,最小值为l,且与直线l:y=kx+m相交于A,B两点(A,B不是椭圆的左右顶点),并满足AA2⊥BA2.试研究:直线l是否过定点?若过定点,请求出定点坐标,若不过定点,请说明理由.

查看答案和解析>>

椭圆C的方程
x2
a2
+
y2
b2
=1(a>b>0)
,斜率为1的直L与椭C交于A(x1,y1)B(x2,y2)两点.
(Ⅰ)若椭圆的离心率e=
3
2
,直线l过点M(b,0),且
OA
OB
=-
12
5
,求椭圆C的方程;
(Ⅱ)直线l过椭圆的右焦点F,设向量
OP
=λ(
OA
+
OB
)(λ>0),若点P在椭C上,λ的取值范围.

查看答案和解析>>

是椭圆C:的左、右焦点,过的直线与椭圆C相交于A、B两点,直线的倾斜角为到直线的距离为

(1)求椭圆C的焦距。

(2)如果,求椭圆C的方程。

 

查看答案和解析>>


同步练习册答案