题目列表(包括答案和解析)
矩形
的中心在坐标原点,边
与
轴平行,
=8,
=6.
分别是矩形四条边的中点,
是线段
的四等分点,
是线段
的四等分点.设直线
与
,
与
,
与
的交点依次为
.
![]()
(1)以
为长轴,以
为短轴的椭圆Q的方程;
(2)根据条件可判定点
都在(1)中的椭圆Q上,请以点L为例,给出证明(即证明点L在椭圆Q上).
(3)设线段
的
(
等分点从左向右依次为
,线段
的
等分点从上向下依次为
,那么直线
与哪条直线的交点一定在椭圆Q上?(写出结果即可,此问不要求证明)
矩形
的中心在坐标原点,边
与
轴平行,
=8,
=6.
分别是矩形四条边的中点,
是线段
的四等分点,
是线段
的四等分点.设直线
与
,
与
,
与
的交点依次为
.
![]()
(1)求以
为长轴,以
为短轴的椭圆Q的方程;
(2)根据条件可判定点
都在(1)中的椭圆Q上,请以点L为例,给出证明(即证明点L在椭圆Q上).
(3)设线段
的
(
等分点从左向右依次为
,线段
的
等分点从上向下依次为
,那么直线
与哪条直线的交点一定在椭圆Q上?(写出结果即可,此问不要求证明)
矩形
的中心在坐标原点,边
与
轴平行,
=8,
=6.
分别是矩形四条边的中点,
是线段
的四等分点,
是线段
的四等分点.设直线
与
,
与
,
与
的交点依次为
.![]()
(1)以
为长轴,以
为短轴的椭圆Q的方程;
(2)根据条件可判定点
都在(1)中的椭圆Q上,请以点L为例,给出证明(即证明点L在椭圆Q上).
(3)设线段
的
(
等分点从左向右依次为
,线段
的
等分点从上向下依次为
,那么直线
与哪条直线的交点一定在椭圆Q上?(写出结果即可,此问不要求证明)
矩形
的中心在坐标原点,边
与
轴平行,
=8,
=6.
分别是矩形四条边的中点,
是线段
的四等分点,
是线段
的四等分点.设直线
与
,
与
,
与
的交点依次为
.![]()
(1)求以
为长轴,以
为短轴的椭圆Q的方程;
(2)根据条件可判定点
都在(1)中的椭圆Q上,请以点L为例,给出证明(即证明点L在椭圆Q上).
(3)设线段
的
(
等分点从左向右依次为
,线段
的
等分点从上向下依次为
,那么直线
与哪条直线的交点一定在椭圆Q上?(写出结果即可,此问不要求证明)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com