题目列表(包括答案和解析)
在平面直角坐标系
中,曲线
与坐标轴的交点都在圆
上.
(1)求圆
的方程;
(2)若圆
与直线
交于
、
两点,且
,求
的值.
【解析】本试题主要是考查了直线与圆的位置关系的运用。
(1)曲线
与
轴的交点为(0,1),
与
轴的交点为(3+2
,0),(3-2
,0) 故可设
的圆心为(3,t),则有32+(t-1)2=(2
)2+t2,解得t=1.
(2)因为圆
与直线
交于
、
两点,且
。联立方程组得到结论。
已知椭圆![]()
的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(I)求椭圆
的方程;
(II)若过点
(2,0)的直线与椭圆
相交于两点
,设
为椭圆上一点,且满足
(O为坐标原点),当
<
时,求实数
的取值范围.
【解析】本试题主要考查了椭圆的方程以及直线与椭圆的位置关系的运用。
第一问中,利用![]()
第二问中,利用直线与椭圆联系,可知得到一元二次方程中
,可得k的范围,然后利用向量的
<
不等式,表示得到t的范围。
解:(1)由题意知
![]()
已知
=
,
=
,
=
,设
是直线
上一点,
是坐标原点.
⑴求使
取最小值时的
;
⑵对(1)中的点
,求
的余弦值.
【解析】第一问中利用设
,则根据已知条件,O,M,P三点共线,则可以得到x=2y,然后利用
![]()
可知当x=4,y=2时取得最小值。
第二问中利用数量积的性质可以表示夹角的余弦值,进而得到结论。
(1)、因为设
则
![]()
可知当x=4,y=2时取得最小值。此时
。
(2)![]()
已知椭圆的长轴长为
,焦点是
,点
到直线
的距离为
,过点
且倾斜角为锐角的直线
与椭圆交于A、B两点,使得
.
(1)求椭圆的标准方程; (2)求直线l的方程.
【解析】(1)中利用点F1到直线x=-
的距离为
可知-
+
=
.得到a2=4而c=
,∴b2=a2-c2=1.
得到椭圆的方程。(2)中,利用
,设出点A(x1,y1)、B(x2,y2).,借助于向量公式
再利用 A、B在椭圆
+y2=1上, 得到坐标的值,然后求解得到直线方程。
解:(1)∵F1到直线x=-
的距离为
,∴-
+
=
.
∴a2=4而c=
,∴b2=a2-c2=1.
∵椭圆的焦点在x轴上,∴所求椭圆的方程为
+y2=1.……4分
(2)设A(x1,y1)、B(x2,y2).由第(1)问知![]()
,![]()
∴
……6分
∵A、B在椭圆
+y2=1上,
∴
……10分
∴l的斜率为
=
.
∴l的方程为y=
(x-
),即
x-y-
=0.
如图,在三棱锥
中,平面
平面
,
,
,
,
为
中点.(Ⅰ)求点B到平面
的距离;(Ⅱ)求二面角
的余弦值.
![]()
【解析】第一问中利用因为
,
为
中点,所以![]()
而平面
平面
,所以
平面
,再由题设条件知道可以分别以
、
、
为
,
,
轴建立直角坐标系得
,
,
,
,
,
,
故平面
的法向量
而
,故点B到平面
的距离![]()
第二问中,由已知得平面
的法向量
,平面
的法向量![]()
故二面角
的余弦值等于![]()
解:(Ⅰ)因为
,
为
中点,所以![]()
而平面
平面
,所以
平面
,
再由题设条件知道可以分别以
、
、
为
,
,
轴建立直角坐标系,得
,
,
,
,
,
,故平面
的法向量![]()
而
,故点B到平面
的距离![]()
(Ⅱ)由已知得平面
的法向量
,平面
的法向量![]()
故二面角
的余弦值等于![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com