7. 1,3,5 查看更多

 

题目列表(包括答案和解析)

1-3+5-7+9-11+…-19=
-10
-10

查看答案和解析>>

1+3+5+7+9+…+97=
2401
2401

查看答案和解析>>

1+3+5+…+(2n-1+)=________________.

查看答案和解析>>

1,3,5

 
已知双曲线的左、右焦点分别是F1F2.

(1)求双曲线上满足的点P的坐标;

(2)椭圆C2的左、右顶点分别是双曲线C1的左、右焦点,椭圆C2的左、右焦点分别是双曲线C1的左、右顶点,若直线与椭圆恒有两个不同的交点AB,且(其中O为坐标原点),求k的取值范围.

查看答案和解析>>

1,3,5

 
 对某电子元件进行寿命追踪调查,情况如下:

寿命(h)
100—200
200—300
300—400
400—500
500—600
个数
20
30
80
40
30
  (1)列出频率分布表:
2)画频率分布直方图;
(3)估计电子元件寿命在100h—400h以内的概率;
(4)估计电子元件寿命在400h以上的概率.

查看答案和解析>>

高考资源网版权所有

一、DBCCC  DCADB

二、11.72  12.  13.  14.  15.

三、16.(Ⅰ).

,∴,∴,∴当时,f(A)取最小值.

(Ⅱ)由(Ⅰ)知, 时, .于是,

.

17.(Ⅰ)设“从甲盒内取出的2个球均为黑球”为事件,“从乙盒内取出的2个球均为黑球”为事件.由于事件相互独立,且

故取出的4个球均为黑球的概率为

(Ⅱ)设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件.由于事件互斥,

故取出的4个球中恰有1个红球的概率为

(Ⅲ)取出的4个球中红球的个数为0,1,2,3时的概率分别记为.由(Ⅰ),(Ⅱ)得.从而

18.(I)∵AB∥CD,AD=DC=CB=a,∴四边形ABCD是等腰梯形.设AC交BD于N,连EN.

∵∠ABC=60°,∴∠DCB=∠ADC=120°,∠DAC=∠ACD=30°,

∴AC=,AB=2a,=90°.

又四边形ACEF是矩形,

∴AC⊥平面BCE.∴AC⊥BE.

(II)∵平面ACEF⊥平面ABCD, EC⊥AC,

∴EC⊥面 ABCD,∴EC⊥CD, EC⊥AD,又AF∥CE,

∴AF⊥AD,而AF=CE,AD=CD,

∴Rt△≌Rt△,DE=DF.

过D作DG⊥EF于G,则G为EF的中点,于是EG=.

在Rt△中,,∴.∴.

    设所求二面角大小为,则由,得,,

www.ks5u.com

.21.(I)由于椭圆过定点A(1,0),于是a=1,c=.

,∴.

(Ⅱ)解方程组,得.

,∴.

(Ⅲ)设抛物线方程为:.

又∵,∴.

,得.

.

内有根且单调递增,

.

 

 

 

 


同步练习册答案