例2. 设数列{an}的首项a1=1.前n项和Sn满足关系式: 3tSn-Sn-1=3t (1)求证:数列{an}是等比数列, 查看更多

 

题目列表(包括答案和解析)

设数列{an}的首项a1=1,前n项和Sn满足关系式tSn-(t+1)Sn-1=t(t>0,n∈N*,n≥2).
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f(
1bn-1
)
(n∈N*,n≥2),求数列{bn}的通项公式;
(Ⅲ)数列{bn}满足条件(Ⅱ),求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1

查看答案和解析>>

设数列{an}的首项a1=1,前n项和Sn满足关系式.3tSn-(2t+3)Sn-1=3t(其中t>0,n=2,3,4,…)
(1)求证:数列{an}是等比数列..(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f(
1bn-1
)
(n=2,3,4…)求数列{bn}的通项公式.(3)求和Sn=b1b2-b2b3+b3b4 -…+(-1)n-1bnbn+1

查看答案和解析>>

设数列{an}的首项a1=1,前n项和Sn满足关系式:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4,…)
(1)求证:数列{an}是等比数列;
(2)设数列{an}是公比为f(t),作数列{bn},使b1=1,bn=f(
1
bn-1
)
(n=2,3,4,…),求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1
(3)若t=-3,设cn=log3a2+log3a3+log3a4+…+log3an+1,Tn=
1
c1
+
1
c2
+…+
1
cn
,求使k
n•2n+1
(n+1)
≥(7-2n)Tn(n∈N+)恒成立的实数k的范围.

查看答案和解析>>

设数列{an}的首项a1=1,前n项和Sn满足关系式:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4,…)
(1)求证:数列{an}是等比数列;
(2)设数列{an}是公比为f(t),作数列{bn},使数学公式(n=2,3,4,…),求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1
(3)若t=-3,设cn=log3a2+log3a3+log3a4+…+log3an+1,Tn=数学公式+数学公式+…+数学公式,求使k数学公式≥(7-2n)Tn(n∈N+)恒成立的实数k的范围.

查看答案和解析>>

设数列{an}的首项a1=1,前n项和Sn满足关系式.3tSn-(2t+3)Sn-1=3t(其中t>0,n=2,3,4,…)
(1)求证:数列{an}是等比数列..(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=数学公式(n=2,3,4…)求数列{bn}的通项公式.(3)求和Sn=b1b2-b2b3+b3b4 -…+(-1)n-1bnbn+1

查看答案和解析>>


同步练习册答案