电流强度(安)随时间(秒)变化的函数的图象如右图所示.则当秒时.电流强度是 查看更多

 

题目列表(包括答案和解析)

(2009•闸北区一模)设f(x)=2cos2x+
3
sin2x
g(x)=
1
2
f(x+
12
)+ax+b
,其中a,b为非零实常数.
(1)若f(x)=1-
3
x∈[-
π
3
π
3
]
,求x;
(2)若x∈R,试讨论函数g(x)的奇偶性,并证明你的结论;
(3)已知:对于任意x1,x2∈R,恒有sin2x1-sin2x2≤2(x1-x2),当且仅当x1=x2时,等号成立.若a≥2,求证:函数g(x)在R上是递增函数.

查看答案和解析>>

(2009•闸北区一模)如图,在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥平面ABCD,AB=1,PA•AC=1,∠ABC=θ(0°<θ≤90°).
(1)若θ=90°,求二面角A-PC-B的大小;
(2)试求四棱锥P-ABCD的体积V的取值范围.

查看答案和解析>>

(2009•淄博一模)为了解某校高三学生的视力情况,随机地抽查了该校1000名高三学生的视力情况,得到频率分布直方图,如图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数b,则a、b的值分别为(  )

查看答案和解析>>

(2009•闸北区一模)记数列{an}的前n项和为Sn,所有奇数项之和为S′,所有偶数项之和为S″.
(1)若{an}是等差数列,项数n为偶数,首项a1=1,公差d=
3
2
,且S″-S′=15,求Sn
(2)若{an}是等差数列,首项a1>0,公差d∈N*,且S′=36,S″=27,请写出所有满足条件的数列;
(3)若数列{an}的首项a1=1,满足2tSn+1-3(t-1)Sn=2t(n∈N*),其中实常数t∈(
3
5
,3)
,且S-S=
5
2
,请写出满足上述条件常数t的两个不同的值和它们所对应的数列.

查看答案和解析>>

(2009•滨州一模)已知曲线C:xy=1,过C上一点An(xn,yn)作一斜率为kn=
1
xn+2
的直线交曲线C于另一点An+1(xn+1,yn+1),点列{An}的横坐标构成数列{xn},其中x1=
11
7

(I)求xn与xn+1的关系式;
(II)令bn=
1
xn-2
+
1
3
,求证:数列{bn}是等比数列;
(III)若cn=3n-λbn(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有cn+1>cn成立.

查看答案和解析>>


同步练习册答案