①-②得: 所以,所求通项为----5分 查看更多

 

题目列表(包括答案和解析)

已知正项数列的前n项和满足:

(1)求数列的通项和前n项和

(2)求数列的前n项和

(3)证明:不等式  对任意的都成立.

【解析】第一问中,由于所以

两式作差,然后得到

从而得到结论

第二问中,利用裂项求和的思想得到结论。

第三问中,

       

结合放缩法得到。

解:(1)∵     ∴

      ∴

      ∴   ∴  ………2分

      又∵正项数列,∴           ∴ 

又n=1时,

   ∴数列是以1为首项,2为公差的等差数列……………3分

                             …………………4分

                   …………………5分 

(2)       …………………6分

    ∴

                          …………………9分

(3)

      …………………12分

        

   ∴不等式  对任意的都成立.

 

查看答案和解析>>

对于数列{An}:A1,A2,A3,…,An,若不改变A1,仅改变A2,A3,…,An中部分项的符号,得到的新数列{an}称为数列{An}的一个生成数列.如仅改变数列1,2,3,4,5的第二、三项的符号可以得到一个生成数列1,-2,-3,4,5.已知数列{an}为数列{
1
2n
}(n∈N*)
的生成数列,Sn为数列{an}的前n项和.
(1)写出S3的所有可能值;
(2)若生成数列{an}的通项公式为an=
1
2n
,n=3k+1
-
1
2n
,n≠3k+1
,k∈N
,求Sn
(3)用数学归纳法证明:对于给定的n∈N*,Sn的所有可能值组成的集合为:{x|x=
2m-1
2n
,m∈N*,m≤2n-1}

查看答案和解析>>

对于数列{An}:A1,A2,A3,…,An,若不改变A1,仅改变A2,A3,…,An中部分项的符号,得到的新数列{an}称为数列{An}的一个生成数列.如仅改变数列1,2,3,4,5的第二、三项的符号可以得到一个生成数列1,-2,-3,4,5.已知数列{an}为数列{
1
2n
}(n∈N*)
的生成数列,Sn为数列{an}的前n项和.
(1)写出S3的所有可能值;
(2)若生成数列{an}的通项公式为an=
1
2n
,n=3k+1
-
1
2n
,n≠3k+1
,k∈N
,求Sn
(3)用数学归纳法证明:对于给定的n∈N*,Sn的所有可能值组成的集合为:{x|x=
2m-1
2n
,m∈N*,m≤2n-1}

查看答案和解析>>

对于数列{An}:A1,A2,A3,…,An,若不改变A1,仅改变A2,A3,…,An中部分项的符号,得到的新数列{an}称为数列{An}的一个生成数列.如仅改变数列1,2,3,4,5的第二、三项的符号可以得到一个生成数列1,-2,-3,4,5.已知数列{an}为数列{
1
2n
}(n∈N*)
的生成数列,Sn为数列{an}的前n项和.
(1)写出S3的所有可能值;
(2)若生成数列{an}满足:S3n=
1
7
(1-
1
8n
)
,求{an}的通项公式;
(3)证明:对于给定的n∈N*,Sn的所有可能值组成的集合为:{x|x=
2m-1
2n
,m∈N*,m≤2n-1}

查看答案和解析>>

2007年12月29日第十届全国人大常委会第三十一次会议表决通过了《关于修改〈中华人民共和国个人所得税法〉的决定》,将个人所得税工资、薪金所得减除费用标准由每月1600元提高到每月2000元,同时明确自2008年3月1日起施行.即公民全月工资,薪金所得不超过2000元的部分不必纳税,超过2000元的部分应纳税,此项税款按下表分段累进计算:

注明:上表中“全月应纳税所得额”是从月工资、薪金收入中减去2000元后的余额.例如某人月工资、薪金收入为3000元,减去2000元,应纳税所得额为1000元,由税率表知其中500元税率为5%,另外500元的税率为10%,所以此人应纳个人所得税为500×5%+500×10%=75元.

(1)请写出月工资,薪金的个人所得税y关于工资,薪金收入x(0<x≤5000)的函数表达式;

(2)某高中数学教师在2008年10月份缴纳的个人所得税是40元,试求他这个月的工资,薪金收入是多少?

查看答案和解析>>


同步练习册答案