题目列表(包括答案和解析)
(本小题满分14分)函数
,其中
,若存在实数
,使得
成立,则称
为
的不动点.
(1)当
,
时,求
的不动点;
(2)若对于任何实数
,函数
恒有两个相异的不动点,求实数
的取值范围;
(3)在(2)的条件下,若函数
的图像上
两点的横坐标是函数
的不动点,且直线
是线段
的垂直平分线,求实数
的取值范围.
已知定义在
上的函数
,如果满足:对任意
,存在常数
,使得
成立,则称
是
上的有界函数,其中
称为函数
的上界.
下面我们来考虑两个函数:
,
.
(Ⅰ)当
时,求函数
在
上的值域,并判断函数
在
上是否为有界函数,请说明理由;
(Ⅱ)若
,函数
在
上的上界是
,求
的取值范围;
(Ⅲ)若函数
在
上是以
为上界的有界函数, 求实数
的取值范围.
已知定义在
上的函数
,如果满足:对任意
,存在常数
,使得
成立,则称
是
上的有界函数,其中
称为函数
的上界.
下面我们来考虑两个函数:
,
.
(Ⅰ)当
时,求函数
在
上的值域,并判断函数
在
上是否为有界函数,请说明理由;
(Ⅱ)若
,函数
在
上的上界是
,求
的取值范围;
(Ⅲ)若函数
在
上是以
为上界的有界函数, 求实数
的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com