5.对于不重合的两个平面.给定下列条件: 查看更多

 

题目列表(包括答案和解析)

对于不重合的两个平面,给定下列条件:

   ①存在平面,使得α、β都垂直于

   ②存在平面,使得α、β都平等于

   ③存在直线,直线,使得

   ④存在异面直线lm,使得

   其中,可以判定α与β平行的条件有(    )

    A.1个             B.2个             C.3              D.4个

查看答案和解析>>

对于不重合的两个平面,给定下列条件:

①存在直线;                     

②存在平面

内有不共线的三点到的距离相等;            

④存在异面直线

其中,可以判定平行的条件有                                                        (    )

A.1个                              B.2个                       C.3个                       D.4个

 

查看答案和解析>>

对于不重合的两个平面,给定下列条件:
①存在直线;         
②存在平面
内有不共线的三点到的距离相等;       
④存在异面直线
其中,可以判定平行的条件有                  (   )
A.1个B.2个C.3个D.4个

查看答案和解析>>

对于不重合的两个平面α,β,给定下列条件:

①存在直线l,使l⊥α,l⊥β;

②存在平面γ,使α⊥γ,β⊥γ;

③α内有不共线三点到β的距离相等;

④存在异面直线l,m,使l∥α,l⊥β,m∥α,m∥β.

其中可以判定α∥β的有________个.

[  ]

A.0

B.1

C.2

D.3

查看答案和解析>>

对于不重合的两个平面α,β,给定下列条件:

①存在直线l,使l⊥α,l⊥β;

②存在平面γ,使α⊥γ,β⊥γ;

③α内有不共线三点到β的距离相等;

④存在异面直线l,m,使l∥α,l∥β,m∥α,m∥β.

其中可以判定α∥β的有________个

[  ]

A.1

B.2

C.3

D.4

查看答案和解析>>

一、ADBAB  CDCBC

二、11  9   12     13  384    14     15     

三、解答题

16.解:(I)

       又,∴   ……5分

     (II)

   

17.解:(Ⅰ) 抛掷一次出现的点数共有6×6 = 36种不同结果,其中“点数之和为7”包含了 (1 , 6) , (2 , 5) , (3 , 4) , (4 , 3) , (5 , 2) , (6 , 1)共6个结果,

∴抛掷一次出现的点数之和为7的概率为 ………………………… 2分

ξ可取1 , 2 , 3 , 4

P (ξ=1) =,P (ξ=2) =,P (ξ= 3) =

P (ξ= 4) =

∴ξ的概率分布列为

ξ

1

2

3

4

P

…… 6分

Eξ= 1×+ 2×+ 3×+ 4×=  …………………………… 8分

(Ⅱ) 不限制两人抛掷的次数,甲获胜的概率为:

 P =+ ()2×+ ()4×+ … = .      ………… 12分

 

18.解:解:(1)它是有一条侧棱垂直于底面的四棱锥      … 3分

(注:评分注意实线、虚线;垂直关系;长度比例等)

(2)由(1)得,6ec8aac122bd4f6e6ec8aac122bd4f6e,得6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e,而6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e…………6分

6ec8aac122bd4f6e

6ec8aac122bd4f6e………8分

又在6ec8aac122bd4f6e中,6ec8aac122bd4f6e,故6ec8aac122bd4f6e

∴二面角6ec8aac122bd4f6e的平面角为6ec8aac122bd4f6e… ………8分

(3)解略。 

19.(I)证明:   ∵  ∴   ∵

是首项为2,公差为1的等差数列.       …………3分

(II)解:=,     …6分

  =.   …7分

(III)证明:

.       …… 9分

    .…………12分

20.解(Ⅰ)∵6ec8aac122bd4f6e过(0,0)    则6ec8aac122bd4f6e

∴∠OCA=90°,  即6ec8aac122bd4f6e  又∵6ec8aac122bd4f6e

将C点坐标代入得  6ec8aac122bd4f6e   解得  c2=8,b2=4

∴椭圆m:6ec8aac122bd4f6e  …………5分

(Ⅱ)由条件D(0,-2)  ∵M(0,t)

1°当k=0时,显然-2<t<2  …………6分

2°当k≠0时,设6ec8aac122bd4f6e

6ec8aac122bd4f6e   消y得  6ec8aac122bd4f6e  

由△>0  可得  6ec8aac122bd4f6e   ①

6ec8aac122bd4f6e

6ec8aac122bd4f6e     6ec8aac122bd4f6e   

6ec8aac122bd4f6e           …………10分

6ec8aac122bd4f6e 

6ec8aac122bd4f6e   ②

∴t>1  将①代入②得   1<t<4

∴t的范围是(1,4)。综上t∈(-2,4)  ………………13分

 

21.解: (1) 依题知,得:的方程为

 即直线的方程是 ………………… 6分

(2)  证明:由(1)得

①由于  ,所以

,所以

②因为  ,

,所以,即

,所以

故当时,有………………… 14分