题目列表(包括答案和解析)
如图,已知椭圆
的焦点和上顶点分别为
、
、
,我们称
为椭圆
的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.
(1)已知椭圆
和
,判断
与
是否相似,如果相似则求出
与
的相似比,若不相似请说明理由;
(2)若与椭圆
相似且半短轴长为
的椭圆为
,且直线
与椭圆为
相交于两点
(异于端点),试问:当
面积最大时,
是否与
有关?并证明你的结论.
(3)根据与椭圆
相似且半短轴长为
的椭圆
的方程,提出你认为有价值的相似椭圆之间的三种性质(不需证明);
![]()
如图,已知椭圆
的焦点和上顶点分别为
、
、
,
我们称
为椭圆
的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为 椭圆的相似比.
(1)已知椭圆
和
,
判断
与
是否相似,如果相似则求出
与
的相似比,若不相似请说明理由;
(2)设短半轴长为
的椭圆
与椭圆
相似,试问在椭圆
上是否存在两点
、
关于直线
对称,,若存在求出b的范围,不存在说明理由.
如图,已知椭圆
的离心率为
,以该椭圆上的点和椭圆的左右焦点F1、F2为顶点的三角形的周长为
。一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的焦点分别为A、B和C、D。
(Ⅰ)求椭圆和双曲线的标准方程
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1
(Ⅲ)是否存在常数
,使得|AB|+|CD|=
|AB|·|CD|恒成立?若存在,求
的值,若不存在,请说明理由。
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com