如图.B为椭圆右顶点.椭圆上点C与A关于原点对称.过点A作两条直线交椭圆P.Q.交x轴与,求证:存在实数 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(
2
+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线PF1、PF2的斜率分别为k1、k2,证明k1•k2=1;
(Ⅲ)(此小题仅理科做)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

精英家教网如图,已知直线l:x=my+1过椭圆C:
x2
a2
+
y2
b2
=1
的右焦点F,抛物线:x2=4
3
y
的焦点为椭圆C的上顶点,且直线l交椭圆C于A、B两点,点A、F、B在直线g:x=4上的射影依次为点D、K、E.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l交y轴于点M,且
MA
=λ1
AF
MB
=λ2
BF
,当m变化时,探求λ12的值是否为定值?若是,求出λ12的值,否则,说明理由;
(Ⅲ)连接AE、BD,试证明当m变化时,直线AE与BD相交于定点N(
5
2
,0)

查看答案和解析>>

精英家教网如图,过椭圆
x2
a2
+
y2
b2
=1 (a>b>0)
的左焦点F1作x轴的垂线交椭圆于点P,
点A和点B分别为椭圆的右顶点和上顶点,OP∥AB.
(1)求椭圆的离心率e;
(2)过右焦点F2作一条弦QR,使QR⊥AB.若△F1QR的面积为20
3
,求椭圆的方程.

查看答案和解析>>

如图,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,在x轴负半轴上有一点B,满足AB⊥AF2.且F1为BF2的中点.
(1)求椭圆C的离心率;
(2)D是过A,B,F2三点的圆上的点,D到直线l:x-
3
y-3=0的最大距离等于椭圆长轴的长,求椭圆C的方程.

查看答案和解析>>

如图,椭圆中心在坐标原点,点F为左焦点,点B为短轴的上顶点,点A为长轴的右顶点.当
FB
BA
时,椭圆被称为“黄金椭圆”,则“黄金椭圆”的离心率e等于(  )

查看答案和解析>>


同步练习册答案