题目列表(包括答案和解析)
| ∫ | e 1 |
| ∫ | e 1 |
| x | 2.50 | 1.01 | 1.90 | 1.22 | 2.52 | 2.17 | 1.89 | 1.96 | 1.36 | 2.22 |
| y | 0.84 | 0.25 | 0.98 | 0.15 | 0.01 | 0.60 | 0.59 | 0.88 | 0.84 | 0.10 |
| lnx | 0.92 | 0.01 | 0.64 | 0.20 | 0.92 | 0.77 | 0.64 | 0.67 | 0.31 | 0.80 |
| ∫ | e 1 |
| 3 |
| 5 |
| 3 |
| 5 |
| AB |
| AD |
| AP |
| a |
| b |
| c |
| a |
| b |
| c |
| AB |
| AD |
| AP |
| AB |
| AD |
| AP |
(1)求证PA⊥底面ABCD;
(2)求四棱锥P—ABCD的体积;
(3)对于向量a=(x1,y1,z1),b=(x2,y2,z2),c=(x3,y3,z3),定义一种运算:
(a×b)·c=x1y2z3+x2y3z1+x3y1z2-x1y3z2-x2y1z3-x3y2z1.
试计算(
×
)·
的绝对值的值;说明其与四棱锥P—ABCD体积的关系,并由此猜想向量这一运算(
×
)·
的绝对值的几何意义.
(12分)四棱锥P—ABCD中,底面ABCD是一个平行四边形,
={2,-1,-4},
={4,2,0},
={-1,2,-1}.
(1)求证:PA⊥底面ABCD;
(2)求四棱锥P—ABCD的体积;
(3)对于向量
={x1,y1,z1},
={x2,y2,z2},
={x3,y3,z3},定义一种运算:
(
×
)·
=x1y2z3+x2y3z1+x3y1z2-x1y3z2-x2y1z3-x3y2z1,试计算(
×
)·
的绝对值的值;说明其与四棱锥P—ABCD体积的关系,并由此猜想向量这一运算(
×
)·
的绝对值的几何意义..
某同学由于求不出积分
的准确值,于是他采用“随机模拟方法”和利用“积分的几何意义”来近似计算积分
.他用计算机分别产生
个在
上的均匀随机数
和
个在
上的均匀随机数
,其数据记录为如下表的前两行.
|
x |
2.50 |
1.01 |
1.90 |
1.22 |
2.52 |
2.17 |
1.89 |
1.96 |
1.36 |
2.22 |
|
y |
0.84 |
0.25 |
0.98 |
0.15 |
0.01 |
0.60 |
0.59 |
0.88 |
0.84 |
0.10 |
|
lnx |
0.92 |
0.01 |
0.64 |
0.20 |
0.92 |
0.77 |
0.64 |
0.67 |
0.31 |
0.80 |
则依此表格中的数据,可得积分
的一个近似值为
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com