∴的极小值为=-2. --------------6分 查看更多

 

题目列表(包括答案和解析)

(6分) 已知函数,当时,的极大值为7;当时,有极小值.求(1)的值; (2)函数的极小值.

 

查看答案和解析>>

(6分)已知函数,当时,的极大值为7;当时,有极小值.求(1)的值; (2)函数的极小值.

查看答案和解析>>

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分.解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,CP是圆O的切线,P为切点,直线CO交圆O于A,B两点,AD⊥CP,垂足为D.
求证:∠DAP=∠BAP.
B.选修4-2:矩阵与变换
设a>0,b>0,若矩阵A=
.
a0
0b
.
把圆C:x2+y2=1变换为椭圆E:
x2
4
+
y2
3
=1.
(1)求a,b的值;(2)求矩阵A的逆矩阵A-1
C.选修4-4:坐标系与参数方程在极坐标系中,已知圆C:ρ=4cosθ被直线l:ρsin(θ-\frac{π}{6})=a截得的弦长为2
3
求实数a的值.
D.选修4-5:不等式选讲已知a,b是正数,求证:a2+4b2+
1
ab
≥4.

查看答案和解析>>

已知函数

(1)求在区间上的最大值;

(2)若函数在区间上存在递减区间,求实数m的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用,求解函数的最值。第一问中,利用导数求解函数的最值,首先求解导数,然后利用极值和端点值比较大小,得到结论。第二问中,我们利用函数在上存在递减区间,即上有解,即,即可,可得到。

解:(1), 

,解得                 ……………3分

上为增函数,在上为减函数,

            

 

 

 

 

 

.          …………6分

(2)

上存在递减区间,上有解,……9分

上有解,

所以,实数的取值范围为  

 

查看答案和解析>>

以下四个说法:
①平均数不受少数几个极端值的影响,中位数受样本中的每一个数据影响;
②同时抛掷两枚硬币,出现“两枚都是正面朝上”、“两枚都是反面朝上”、“恰好一枚硬币正面朝上”的概率一样大;
③甲、乙两人进行下棋比赛,甲获胜的概率是0.4,两人下成和棋的概率是0.2,则甲不输的概率是0.6;
④在频率分布直方图中,小矩形的高表示频率.
正确的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>


同步练习册答案