25 查看更多

 

题目列表(包括答案和解析)

25②(供选用《选修3-l》物理课教材的学生做)
如图所示,空间分布着方向平行于纸面且与场区边界垂直的有界匀强电场,电场强度为E,场区宽度为L.在紧靠电场的右侧空间分布着方向垂直于纸面的两个匀强磁场,磁感应强度均为B,两磁场的方向相反、分界面与电场边界平行,且右边磁场范围足够大.一质量为m、电荷量为q的带正电的粒子从A点由静止释放后,在电场和磁场存在的空间进行周期性的运动.已知电场的右边界到两磁场分界面间的距离是带电粒子在磁场中运动的轨道半径的
3
2
倍,粒子重力不计.求:
(1)粒子经电场加速后,进入磁场的速度大小;
(2)粒子在磁场中运动的轨道半径;
(3)粒子从A点出发到第一次返回A点的时间.

查看答案和解析>>

(25分)如图所示,两个金属轮A1、A2,可绕通过各自中心并与轮面垂直的固定的光滑金属轴O1和O2转动,O1和O2相互平行,水平放置.每个金属轮由四根金属辐条和金属环组成,A1轮的辐条长为a1、电阻为R1,A2轮的辐条长为a2、电阻为R2,连接辐条的金属环的宽度与电阻都可以忽略.半径为a0的绝缘圆盘D与A1同轴且固连在一起.一轻细绳的一端固定在D边缘上的某点,绳在D上绕足够匝数后,悬挂一质量为m的重物P.当P下落时,通过细绳带动D和A1绕O1轴转动.转动过程中,A1、A2保持接触,无相对滑动;两轮与各自细轴之间保持良好的电接触;两细轴通过导线与一阻值为R的电阻相连.除R和A1、A2两轮中辐条的电阻外,所有金属的电阻都不计.整个装置处在磁感应强度为B的匀强磁场中,磁场方向与转轴平行.现将P释放,试求P匀速下落时的速度.

查看答案和解析>>

(25分)图示为一固定不动的绝缘的圆筒形容器的横截面,其半径为R,圆筒的轴线在O处.圆筒内有匀强磁场,磁场方向与圆筒的轴线平行,磁感应强度为B.筒壁的H处开有小孔,整个装置处在真空中.现有一质量为m、电荷量为q的带电粒子P以某一初速度沿筒的半径方向从小孔射入圆筒,经与筒壁碰撞后又从小孔射出圆筒.设:筒壁是光滑的,P与筒壁碰撞是弹性的,P与筒壁碰撞时其电荷量是不变的.若要使P与筒壁碰撞的次数最少,问:

1.P的速率应为多少?

2.P从进入圆筒到射出圆筒经历的时间为多少?

查看答案和解析>>

(25分)图中正方形ABCD是水平放置的固定梁的横截面,AB是水平的,截面的边长都是l.一根长为2l的柔软的轻细绳,一端固定在A点,另一端系一质量为m的小球,初始时,手持小球,将绳拉直,绕过B点使小球处于C点.现给小球一竖直向下的初速度v0,使小球与CB边无接触地向下运动,当,分别取下列两值时,小球将打到梁上的何处?

1.

2.

设绳的伸长量可不计而且绳是非弹性的.

查看答案和解析>>

(25分)从赤道上的C点发射洲际导弹,使之精确地击中北极点N,要求发射所用的能量最少.假定地球是一质量均匀分布的半径为R的球体,R=6400km.已知质量为m的物体在地球引力作用下作椭圆运动时,其能量E与椭圆半长轴a的关系为式中M为地球质量,G为引力常量.

  

1.假定地球没有自转,求最小发射速度的大小和方向(用速度方向与从地心O到发射点C的连线之间的夹角表示).

2.若考虑地球的自转,则最小发射速度的大小为多少?

3.试导出

查看答案和解析>>

1. B 解析:由图可知AB、BC、CD的距离分别是10cm30cm50cm,它们的距离之比为1:3:5,说明水滴做自由落体运动,在A到B、B到C,C到D所用时间相等,由得,,所以光源应满足的条件是间歇发光其间隔时间为0.14s。

2. C 解析:依题意作出物体的v-t图象,如图1所示。图线下方所围成的面积表示物体的位移,由几何知识知图线②、③不满足AB=BC。只能是①这种情况。因为斜率表示加速度,所以a1<a2,选项C正确。

 

3. D 解析:对挂钩进行受力分析,如图所示,图中α、β为A、B绳与竖直方向的夹角,两绳拉力如图中FA0、FB0所示;当右侧杆向左平移,则α、β均变小,两绳拉力如图中FA、FB所示;由图可知,A、B绳的拉力均变小,AB错;由于挂钩受力平衡,两绳对挂钩的拉力合力一定与衣服对挂钩的拉力大小相等、方向相反,因此合力不变,D正确。

 

4. A 解析:从0到的时间内,磁感应强度从2均匀减小到0,根据楞次定律和右手定则可判断出感应电流的方法与规定的方向相反,大小为:;同理,从到T的时间,磁感应强度方向向下,大小均匀增大,感应电流的磁场方向向上,由右手定则可知感应电流的方法与规定的方向相反,大小为:,故A选项正确。

5. ABC 解析:从F-t图象上可以看出,在0~t1、t2~t3和t4以后的时间内,弹簧秤对钩码的拉力F等于钩码的重力10N;t1~t2这段时间内,弹簧秤对钩码的拉力F小于钩码的重力,钩码处于失重状态;t3~t4这段时间内,弹簧秤对钩码的拉力F大于钩码的重力,钩码处于超重状态,所以选项ABC正确。

6. B 解析:由图像的变化快慢可知曲线ab先变化非常快,为斥力图,cd为引力图,e点是两曲线的交点,即分子间引力与斥力相等时,此时分子间距离的数量级为10-10m,B对A错;分子间距离大于e点横坐标值时,分子间作用力表现为引力,C错;分子势能在平衡位置以内随距离增大而减小,在平衡位置以外随分子间距离增大而增大,D错.

7. C 解析:假设将小球放在弹簧顶端释放球,这就是一个常见的弹簧振子,由对称性知,球到达最低点的加速度为,本题中弹簧在最低点时压缩量比假设的模型大,故答案为C.

8. B 解析:导体杆往复运动,切割磁感线相当于电源,其产生的感应电动势E=Blv,由于杆相当于弹簧振子,其在O点处的速度最大,产生的感应电动势最大,因此电路中的电流最大。根据右手定则,电流在P、Q两处改变方向,此时的电流为零。故选择B.

9. 11.14 mm   

10.  1.5V 0.2Ω 0.4Ω 1.25W 0.1Ω 2.5

解析:由电源的伏安特性曲线读得电源电动势为E=1.5V,横截距表示短路电流I=7.5A,电源内阻为Ω。

a点对应的电源输出电压为1.0V,电流为2.5A,此时的电压和电流是加在外电阻两端的电压和流过外电阻的电流,因此Ω,电源内部热耗功率为 W。

    图线中的b点所对应的外电阻Rb上的电压为0.5V,流过其中的电流为5.0A,于是Ω  输出功率为Pb=IbUb=0.25W。

11. 解析:(1)因为电路中需要得到改装后电压表量程与电源电动势两个未知数,所以需要两个电路状态联立方程求解。连接如图所示。

(2)当当S1与S2均闭合时,由闭合电路的欧姆定律得:

即:         ①

当S1闭合,S2断开时,由闭合电路的欧姆定律得:

即:

由①②两式可得:

则电压表的量程:

12. 解析:用图象求解,做出速度时间图象如图所示,从图象看出从B上升到最高点的时间与由最高点落回A的时间之比为1:2,所以从A运动到B的时间与从B上升到最高点的时间之比为1:3,即,又    所以解得

 

13.

半径/cm

质量/m0

角速度/rad?s-1

圈数

转动动能/J

 

 

 

 

6.4

 

 

 

 

14.4

 

 

 

 

25.6

 

 

 

 

12.8

 

 

 

 

19.2

 

 

 

 

25.6

 

 

 

 

25.6

 

 

 

 

57.6

 

 

 

 

102.4

 

(2)EK = kmω2 r2 (k是比例常数)                (3)控制变量法 

14.  解析:(1)依题意分析可知:碰撞发生在第1、2两次闪光时刻之间,碰撞后B静止,故碰撞发生在x=60cm处。

(2)碰撞后A向左做匀速直线运动,设其速度为

碰撞到第二次闪光时A向左运动10cm,时间设为,有

第一次闪光到发生碰撞时间为,有:

由以上各式可得:

(3)取向右方向为正方向,碰撞前:A的速度,B的速度

碰撞后:A的速度,B的速度

由动量守恒守恒定律可得:

由以上各式可得:=2:3

 


同步练习册答案