(1)求函数的表达式,求数列的通项公式, 查看更多

 

题目列表(包括答案和解析)

设数列{an}的前n项和为Sn,点(n,
Sn
n
)(n∈N*)均在函数y=-x+12的图象上.
(1)写出Sn关于n的函数表达式;
(2)求数列{an}的通项公式;
(3)计算T16=|a1|+|a2|+|a3|+…+|a16|;
(4)已知bn=
an-13
2
,若对一切n∈N*均有Sn-3<m•bn成立,求实数m的取值范围.

查看答案和解析>>

奇函数f(x)=
ax2+bx+1
cx+d
 (x≠0,a>1)
,且当x>0时,f(x)有最小值2
2
,又f(1)=3.
(1)求f(x)的表达式;
(2)设g(x)=xf(x),正数数列{an}中,a1=1,an+12=g(an),求数列{an}的通项公式;
(3)设h(x)=
1
2
f(x)-
3
2x
,数列{bn}中b1=m(m>0),bn+1=h(bn)(n∈N*).是否存在常数m使bn•bn+1>0对任意n∈N*恒成立.若存在,求m的取值范围,若不存在,说明理由.

查看答案和解析>>

将函数f(x)=sin
x
2
cos
x
2
+2013
在区间(0,+∞)内的全部极值点按从小到大的顺序排成数列{an}(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=2nan,数列{bn}的前n项和为Tn,求Tn的表达式.

查看答案和解析>>

设函数f(x)=数学公式(a∈N*),又存在非零自然数m,使得f(m)=m,f(-m)<-数学公式成立.
(1)求函数f(x)的表达式;
(2)设{an}是各项非零的数列,若数学公式对任意n∈N*成立,求数列{an}的一个通项公式;
(3)在(2)的条件下,数列{an}是否惟一确定?请给出判断,并予以证明.

查看答案和解析>>

设函数f(x)=
x2
ax-2
(a∈N*),又存在非零自然数m,使得f(m)=m,f(-m)<-
1
m
成立.
(1)求函数f(x)的表达式;
(2)设{an}是各项非零的数列,若f(
1
an
)=
1
4(a1+a2+…+an)
对任意n∈N*成立,求数列{an}的一个通项公式;
(3)在(2)的条件下,数列{an}是否惟一确定?请给出判断,并予以证明.

查看答案和解析>>

一、填空题:本大题共14小题,每小题5分,共70分.

1.   2.   3.   4.   5.1   6.  7.  8. 9.16   10.8   11.  12.   13.  14. ①③

二、解答题:本大题共6小题,共90分.

15.(1)设集合中的点为事件,  区域的面积为36,  区域的面积为18

(2)设点在集合为事件,  甲、乙两人各掷一次骰子所得的点数为36个,其中在集合中的点有21个,故

16.(1)由4sinB ? sin2+ cos2B = 1 +得:

,          

(2)法1:为锐角          

由已知得:, 角为锐角      可得:

由正弦定理得:

法2:由得:,  由余弦定理知:

即:          

17.(1)证明:连接,取中点,连接

在等腰梯形中,,AB=AD,,E是BC的中点

都是等边三角形   

平面    平面

平面   

(2)证明:连接于点,连接

,且    四边形是平行四边形   是线段的中点

是线段的中点     

平面   平面

(3)与平面不垂直.

证明:假设平面,  则

平面  

平面    平面   

,这与矛盾

与平面不垂直.

18.(1)设椭圆的标准方程为

依题意得:,得   ∴  所以,椭圆的标准方程为

(2)设过点的直线方程为:,代入椭圆方程得;

  (*)

依题意得:,即 

得:,且方程的根为  

当点位于轴上方时,过点垂直的直线与轴交于点

直线的方程是:,  

所求圆即为以线段DE为直径的圆,故方程为:

同理可得:当点位于轴下方时,圆的方程为:

(3)设=得:,代入

(**)    要证=,即证

由方程组(**)可知方程组(1)成立,(2)显然成立.∴=

19..解(1)的解集有且只有一个元素,

当a=4时,函数上递减

故存在,使得不等式成立

当a=0时,函数上递增

故不存在,使得不等式成立

综上,得a=4,…………………………5分

(2)由(1)可知

当n=1时,

时,

(3)

+

               =+>

               >    

20解:(1)由的定义可知,(对所有实数)等价于

(对所有实数)这又等价于,即

对所有实数均成立.        (*)

  由于的最大值为

  故(*)等价于,即,这就是所求的充分必要条件

(2)分两种情形讨论

     (i)当时,由(1)知(对所有实数

则由易知

再由的单调性可知,

函数在区间上的单调增区间的长度

(参见示意图1)

(ii)时,不妨设,则,于是

   当时,有,从而

时,有

从而  ;

时,,及,由方程

      解得图象交点的横坐标为

                          ⑴

 

显然

这表明之间。由⑴易知

 

综上可知,在区间上,   (参见示意图2)

故由函数的单调性可知,在区间上的单调增区间的长度之和为,由于,即,得

          ⑵

故由⑴、⑵得 

综合(i)(ii)可知,在区间上的单调增区间的长度和为

 

 

 

 

                                    

 


同步练习册答案