精英家教网 > 高中数学 > 题目详情
设函数f(x)=
x2
ax-2
(a∈N*),又存在非零自然数m,使得f(m)=m,f(-m)<-
1
m
成立.
(1)求函数f(x)的表达式;
(2)设{an}是各项非零的数列,若f(
1
an
)=
1
4(a1+a2+…+an)
对任意n∈N*成立,求数列{an}的一个通项公式;
(3)在(2)的条件下,数列{an}是否惟一确定?请给出判断,并予以证明.
(1)∵f(x)=
x2
ax-2
(a∈N*),
∴f(m)=
m2
am-2
=m,且m≠0,
∴(a-1)m=2,显然a≠1,所以m=
2
a-1
①;
又f(-m)=
m2
-am-2
<-
1
m
,即
m3
am+2
>1,
由(a,m∈N*)得:m3>am+2②,
把①代入②,得
8
(a-1)3
2a
a-1
+2;
整理,得
8
(a-1)3
-
2
a-1
-4>0,
根据a≠1,a∈N*,取a=2,满足上式,当a≥3时,
8
(a-1)3
-
2
a-1
-4<0,
故a=2,此时m=2;
所以,函数f(x)=
x2
2x-2

(2)令sn=a1+a2+…+an,根据(1)知f(x)=
x2
2x-2
,则f(
1
an
)
=
1
2an-2an2

代入f(
1
an
)=
1
4(a1+a2+…+an)

得2an-2an2=4(a1+a2+…+an)=4sn,即an-an2=2sn
∴an-1-an-12=2sn-1(n≥2),
∴(an-an2)-(an-1-an-12)=2an
∴an+an-1=0,或an-an-1=-1(n≥2),
又当n=1时,a1-a12=2a1
∴a1=0(舍去),或a1=-1;
由an-an-1=-1,得{an}是等差数列,通项an=-n.
(3)由(2)的条件知,数列{an}的通项公式不止一个,
例如由an+an-1=0,且a1=-1,可得an=(-1)n(n为奇数时);
所以,数列{an}不是惟一确定的.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0与g(x0)<0同时成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)讨论f(x)的单调性.
(2)若f(x)有两个极值点x1,x2,且x1<x2,求f(x2)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲线y=f(x)在x=1处的切线为y=x,求实数m的值;
(2)当m=2时,若方程f(x)-h(x)=0在[1,3]上恰好有两个不同的实数解,求实数a的取值范围;
(3)是否存在实数m,使函数f(x)和函数h(x)在公共定义域上具有相同的单调性?若存在,求出m的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定义域内既有极大值又有极小值,求实数a的取值范围;
(3)求证:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步练习册答案