(Ⅱ)设平面AMN与PAB所成锐二面角的大小为,作,则故所求平面AMN与PAB所成锐二面角的大小为---- 查看更多

 

题目列表(包括答案和解析)

(2010•福建模拟)如图,l1、l2是两条互相垂直的异面直线,点P、C在直线l1上,点A、B在直线l2上,M、N分别是线段AB、AP的中点,且PC=AC=a,PA=
2
a

(Ⅰ)证明:PC⊥平面ABC;
(Ⅱ)设平面MNC与平面PBC所成的角为θ(0°<θ≤90°).现给出下列四个条件:
CM=
1
2
AB
;②AB=
2
a
;③CM⊥AB;④BC⊥AC.
请你从中再选择两个条件以确定cosθ的值,并求之.

查看答案和解析>>

在几何体ABCDE中,∠BAC=
π2
,DC⊥平面ABC,EB⊥平面ABC,AB=AC=BE=2,CD=1.
(1)设平面ABE与平面ACD的交线为直线l,求证:l∥平面BCDE;
(2)设F是BC的中点,求证:平面AFD⊥平面AFE;
(3)求几何体ABCDE的体积.

查看答案和解析>>

精英家教网如图,已知四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,且PA=AD=2,点M、N分别在侧棱PD、PC上,且PM=MD.
(1)求证:AM⊥平面PCD;
(2)若
PN
=
1
2
NC
,求平面AMN与平面PAB的所成锐二面角的余弦值.

查看答案和解析>>

正方体ABCD-A1B1C1D1的棱长为1,E在棱CC1上,C1E=3CE,设平面A1DE与正方体的侧面BB1C1C交于线段EF,则线段EF的长为
3
4
2
3
4
2

查看答案和解析>>

已知△ABC是正三角形,GC是△ABC的中线,EA、FB、CD都垂直于平面ABC.EA=3a,AB=CD=2a,FB=a,设平面EDF与平面ABC的交线为l.
(1)证明GC∥l;
(2)证明平面EABF与平面EDF垂直;
(3)求多面体ABCDEF的体积.

查看答案和解析>>


同步练习册答案