已知动点M分别与两定点A的连线的斜率之积为定值m.若点M的轨迹是焦点在x轴上的椭圆.则m的取值范围是(-1.0),若点M的轨迹是离心率为2的双曲线.则m的值为 3 . 查看更多

 

题目列表(包括答案和解析)

已知动点P(x,y)与两定点M(-1,0),N(1,0)连线的斜率之积等于常数λ(λ≠0).
(1)求动点P的轨迹C的形状;
(2)试根据λ的取值情况讨论轨迹C的形状;
(3)当λ=-2时,过E(1,0)作两条互相垂直直线l1、l2,且分别与轨迹C交于A、B两点,探究直线AB是否过定点?若过定点,请求出定点坐标;否则,说明理由.

查看答案和解析>>

已知动点P(x,y)与两定点M(-1,0),N(1,0)连线的斜率之积等于常数λ(λ≠0).
(1)求动点P的轨迹C的形状;
(2)试根据λ的取值情况讨论轨迹C的形状;
(3)当λ=-2时,过E(1,0)作两条互相垂直直线l1、l2,且分别与轨迹C交于A、B两点,探究直线AB是否过定点?若过定点,请求出定点坐标;否则,说明理由.

查看答案和解析>>

已知动点P(x,y)与一定点F(1,0)的距离和它到一定直线l:x=4的距离之比为
(Ⅰ) 求动点P(x,y)的轨迹C的方程;
(Ⅱ)已知直线l':x=my+1交轨迹C于A、B两点,过点A、B分别作直线l:x=4的垂线,垂足依次为点D、E.连接AE、BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标,并给予证明;否则说明理由.

查看答案和解析>>

已知动点P(x,y)与两定点M(-1,0),N(1,0)连线的斜率之积等于常数λ(λ≠0).
(1)求动点P的轨迹C的形状;
(2)试根据λ的取值情况讨论轨迹C的形状;
(3)当λ=-2时,过E(1,0)作两条互相垂直直线l1、l2,且分别与轨迹C交于A、B两点,探究直线AB是否过定点?若过定点,请求出定点坐标;否则,说明理由.

查看答案和解析>>

已知抛物线C的顶点为坐标原点,椭圆C′的对称轴是坐标轴,抛物线C在x轴上的焦点恰好是椭圆C′的焦点
(Ⅰ)若抛物线C和椭圆C′都经过点M(1,2),求抛物线C和椭圆C′的方程;
(Ⅱ)已知动直线l过点p(3,0),交抛物线C于A,B两点,直线l′:x=2被以AP为直径的圆截得的弦长为定值,求抛物线C的方程;
(Ⅲ)在(Ⅱ)的条件下,分别过A,B的抛物线C的两条切线的交点E的轨迹为D,直线AB与轨迹D交于点F,求|EF|的最小值.

查看答案和解析>>


同步练习册答案