两点.若在圆上存在点.使求直线的方程. 南师大附校09高考二轮复习限时训练 查看更多

 

题目列表(包括答案和解析)

直线l过x轴上的点M,l交椭圆
x2
8
+
y2
4
=1
于A,B两点,O是坐标原点.
(1)若M的坐标为(2,0),当OA⊥OB时,求直线l的方程;
(2)若M的坐标为(1,0),设直线l的斜率为k(k≠0),是否存直线l,使得l垂直平分椭圆的一条弦?如果存在,求k的取值范围;如果不存在,说明理由.

查看答案和解析>>

直线l过x轴上的点M,l交椭圆
x2
8
+
y2
4
=1
于A,B两点,O是坐标原点.
(1)若M的坐标为(2,0),当OA⊥OB时,求直线l的方程;
(2)若M的坐标为(1,0),设直线l的斜率为k(k≠0),是否存直线l,使得l垂直平分椭圆的一条弦?如果存在,求k的取值范围;如果不存在,说明理由.

查看答案和解析>>

已知直线l与椭圆C:
x2
3
+
y2
2
=1
交于P(x1,y1),Q(x2,y2)两不同点,且△OPQ的面积S△OPQ=
6
2
,其中O为坐标原点.
(Ⅰ)证明x12+x22和y12+y22均为定值;
(Ⅱ)设线段PQ的中点为M,求|OM|•|PQ|的最大值;
(Ⅲ)椭圆C上是否存在点D,E,G,使得S△ODE=S△ODG=S△OEG=
6
2
?若存在,判断△DEG的形状;若不存在,请说明理由.

查看答案和解析>>

已知直线l:
1
4
x+b
(b≠0)与椭圆C:
x2
a2
+y2=1
相交于A、B两点,点P在椭圆C上但不在直线l上.
(1)若P点的坐标为(1,
3
2
),求b的取值范围;
(2)是否存在这样的点P,使得直线PA、PE的斜率之积为定值?若存在,求出P点坐标及定值,若不存在,说明理由.

查看答案和解析>>

已知直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5交于A、B两点;
(Ⅰ)若|AB|=
17
,求直线l的倾斜角;
(Ⅱ)求弦AB的中点M的轨迹方程;
(Ⅲ)圆C上是否存在一点P使得△ABP为等边三角形?若存在,求出P点坐标;不存在,请说明理由.

查看答案和解析>>

一、填空题

1、        2、40    3、②  ④)    4、-1     5、    6、3

7、       8、   9、1   10、    11、    12、46 

13、解:(1)∵ab,∴a?b=0.而a=(3sinα,cosα),b=(2sinα, 5sinα-4cosα),

a?b=6sin2α+5sinαcosα-4cos2α=0.……………………………………2分

由于cosα≠0,∴6tan2α+5tanα-4 =0.解之,得tanα=-,或tanα=.……… 6分

∵α∈(),tanα<0,故tanα=(舍去).∴tanα=-.…………7分

(2)∵α∈(),∴

由tanα=-,求得=2(舍去).

,…………………………………………………………12分

cos()=. ……15分

14、解:由已知圆的方程为

平移得到.

.

.                                                      

,且,∴.∴.

的中点为D.

,则,又.

的距离等于.     即,           ∴.

∴直线的方程为:.      

 


同步练习册答案