15.已知定点A(4.2).O是坐标原点.P是线段OA的垂直平分线 上一点.若∠OPA为钝角.那么点P的横坐标的取值范围是 . 查看更多

 

题目列表(包括答案和解析)

已知以点C(t,
2t
)(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.
(Ⅰ)求证:△AOB的面积为定值;
(Ⅱ)设直线2x+y-4=0与圆C交于点M、N,若丨OM丨=丨ON丨,求圆C的方程;
(Ⅲ)在(Ⅱ)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求丨PB丨+丨PQ丨的最小值及此时点P的坐标.

查看答案和解析>>

已知平面上一定点C(-1,0)和一直线l:x=-4,P(x,y)为该平面上一动点,作PQ⊥l,垂足为Q,且(
PQ
+2
PC
)•(
PQ
-2
PC
)=0

(1)求点P的轨迹方程;
(2)点O是坐标原点,过点C的直线与点P的轨迹交于A,B两点,求
OA
OB
的取值范围.

查看答案和解析>>

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
3
2
,点M(4,1)是椭圆上一定点,直线l:y=x+m交椭圆于不同的两点A、B.
(1)求椭圆方程;
(2)求m的取值范围;
(3)求△OAB面积的最大值.(点O为坐标原点)

查看答案和解析>>

已知点A(1,1)是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上一点,F1,F2是椭圆的两焦点,且满足|AF1|+|AF2|=4.
(1)求椭圆的两焦点坐标;
(2)设点B是椭圆上任意一点,如果|AB|最大时,求证A、B两点关于原点O不对称;
(3)设点C、D是椭圆上两点,直线AC、AD的倾斜角互补,试判断直线CD的斜率是否为定值?若是定值,求出定值;若不是定值,说明理由.

查看答案和解析>>

已知椭圆C1,抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上各取两点,将其坐标记录于下表中:
x 3 -2 4
2
y -2
3
0 -4
2
2
(Ⅰ)求C1、C2的标准方程;
(Ⅱ)若过曲线C1的右焦点F2的任意一条直线与曲线C1相交于A、B两点,试证明在x轴上存在一定点P,使得
PA
PB
的值是常数.

查看答案和解析>>

一、选择题:(每题5分,共60分)

20080416

二、填空题:每题5分,共20分)

13.[-5,7]; 14.();   15.(1,2)(2,3);    16.②③④

17.解:(1)

.又.(6分)

   (2)由

.(6分)

18.证明:(1)因为在正方形ABCD中,AC=2

可得:在△PAB中,PA2+AB2=PB2=6。

所以PA⊥AB

同理可证PA⊥AD

故PA⊥平面ABCD (4分)

   (2)取PE中点M,连接FM,BM,

连接BD交AC于O,连接OE

∵F,M分别是PC,PF的中点,

∴FM∥CE,

又FM面AEC,CE面AEC

∴FM∥面AEC

又E是DM的中点

OE∥BM,OE面AEC,BM面AEC

∴BM∥面AEC且BM∩FM=M

∴平面BFM∥平面ACE

又BF平面BFM,∴BF∥平面ACE (4分)

   (3)连接FO,则FO∥PA,因为PA⊥平面ABCD,则FO⊥平面ABCD,所以FO=1,

SㄓACD=1,

    ∴VFACD=VF――ACD=  (4分)

19. (1)由已知圆的标准方程为:(x-aCosφ)2+(y-aSinφ)2=a2(a>0)

设圆的圆心坐标为(x,y),则(为参数),

消参数得圆心的轨迹方程为:x2+y2=a2,…………(5分)

   (2)有方程组得公共弦的方程:

圆X2+Y2=a2的圆心到公共弦的距离d=,(定值)

∴弦长l=(定值)               (5分)

20.解:(1)

时,取最小值

.(6分)

   (2)令

(不合题意,舍去).

变化时的变化情况如下表:

递增

极大值

递减

内有最大值

内恒成立等价于内恒成立,

即等价于

所以的取值范围为.(6分)

21.解:(1)

数列是首项为,公比为的等比数列,

时,

     (6分)

   (2)

时,

时,,…………①

,………………………②

得:

也满足上式,

.(6分)

22.解:(1)由题意椭圆的离心率

        

∴椭圆方程为……2分

又点在椭圆上

         ∴椭圆的方程为(4分)

(2)设

消去并整理得……6分

∵直线与椭圆有两个交点

,即……8分

中点的坐标为……10分

的垂直平分线方程:

……12分

将上式代入得

   即 

的取值范围为…………(8分)