题目列表(包括答案和解析)
(本小题满分14分)
已知函数
。
(1)证明:![]()
(2)若数列
的通项公式为
,求数列
的前
项和
;w.w.w.k.s.5.u.c.o.m
![]()
(3)设数列
满足:
,设
,
若(2)中的
满足对任意不小于2的正整数
,
恒成立,
试求
的最大值。
(本小题满分14分)已知
,点
在
轴上,点
在
轴的正半轴,点
在直线
上,且满足
,
. w.w.w.k.s.5.u.c.o.m
![]()
(Ⅰ)当点
在
轴上移动时,求动点
的轨迹
方程;
(本小题满分14分)设函数![]()
(1)求函数
的单调区间;
(2)若当
时,不等式
恒成立,求实数
的取值范围;w.w.w.k.s.5.u.c.o.m
(本小题满分14分)
已知
,其中
是自然常数,![]()
(1)讨论
时,
的单调性、极值;w.w.w.k.s.5.u.c.o.m
![]()
(2)求证:在(1)的条件下,
;
(3)是否存在实数
,使
的最小值是3,若存在,求出
的值;若不存在,说明理由.
(本小题满分14分)
设数列
的前
项和为
,对任意的正整数
,都有
成立,记
。
(I)求数列
的通项公式;
(II)记
,设数列
的前
项和为
,求证:对任意正整数
都有
;
(III)设数列
的前
项和为
。已知正实数
满足:对任意正整数
恒成立,求
的最小值。
一.选择题:DBBAC DBDBD
解析:1:由sin
x>cos
x得cos
x-sin
x<0, 即cos2x<0,所以:
+kπ<2x<
+kπ,选D.
2:∵复数3-
i的一个辐角为-π/6,对应的向量按顺时针方向旋转π/3,
所得向量对应的辐角为-π/2,此时复数应为纯虚数,对照各选择项,选(B)。
3:由
又
代入选择支检验
被排除;又由
,
即
被排除.故选
.
4:依题意有
, ①
②
由①2-②×2得,
,解得
。
又由
,得
,所以
不合题意。故选A。
5:令
,这两个方程的曲线交点的个数就是原方程实数解的个数.由于直线
的斜率为
,又
所以仅当
时,两图象有交点.由函数
的周期性,把闭区间
分成


共
个区间,在每个区间上,两图象都有两个交点,注意到原点多计一次,故实际交点有
个.即原方程有63个实数解.故选
.
6:连接BE、CE则四棱锥E-ABCD的体积VE-ABCD=
×3×3×2=6,又整个几何体大于部分的体积,所求几何体的体积V求> VE-ABCD,选(D)
|