(Ⅱ)原不等式可化为由(Ⅰ)知.时.的最大值为. 查看更多

 

题目列表(包括答案和解析)

解关于的不等式:

【解析】解:当时,原不等式可变为,即            (2分)

 当时,原不等式可变为         (5分)  若时,的解为            (7分)

 若时,的解为         (9分) 若时,无解(10分) 若时,的解为  (12分综上所述

时,原不等式的解为

时,原不等式的解为

时,原不等式的解为

时,原不等式的解为

时,原不等式的解为:

 

查看答案和解析>>

已知,设是方程的两个根,不等式对任意实数恒成立;函数有两个不同的零点.求使“P且Q”为真命题的实数的取值范围.

【解析】本试题主要考查了命题和函数零点的运用。由题设x1+x2=a,x1x2=-2,

∴|x1-x2|=.

当a∈[1,2]时,的最小值为3. 当a∈[1,2]时,的最小值为3.

要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判别式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

可得到要使“P∧Q”为真命题,只需P真Q真即可。

解:由题设x1+x2=a,x1x2=-2,

∴|x1-x2|=.

当a∈[1,2]时,的最小值为3.

要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判别式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

综上,要使“P∧Q”为真命题,只需P真Q真,即

解得实数m的取值范围是(4,8]

 

查看答案和解析>>

2
3
sinθcosθ-cos2θ
可化为2sin(2θ+φ),则角φ的一个值可以为
-
π
6
-
π
6

查看答案和解析>>

下列说法中,错误的是

A.零和负数没有对数

B.任何一个指数式都可化为对数式

C.以10为底的对数叫做常用对数

D.以e为底的对数叫做自然对数

查看答案和解析>>

已知函数

(Ⅰ)函数的最小正周期是多少?

(Ⅱ)函数的单调增区间是什么?

(Ⅲ)函数的图像可由函数的图像如何变换而得到?

 

查看答案和解析>>


同步练习册答案