(2)若, ,求和的值. 查看更多

 

题目列表(包括答案和解析)

若存在常数k和b,使得函数f(x)和g(x)在它们的公共定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为函数f(x)和g(x)的“隔离直线”.已知f(x)=x2,g(x)=2elnx.
(I)求F(x)=f(x)-g(x)的极值;
(II)函数f(x)和g(x)是否存在隔离直线?若存在,求出此隔离直线的方程,若不存在,请说明理由.

查看答案和解析>>

20、若有穷数列a1,a2…an(n是正整数),满足a1=an,a2=an-1…an=a1即ai=an-i+1
(i是正整数,且1≤i≤n),就称该数列为“对称数列”.
(1)已知数列{bn}是项数为7的对称数列,且b1,b2,b3,b4成等差数列,b1=2,b4=11,试写出{bn}的每一项
(2)已知{cn}是项数为2k-1(k≥1)的对称数列,且ck,ck+1…c2k-1构成首项为50,公差为-4的等差数列,数列{cn}的前2k-1项和为S2k-1,则当k为何值时,S2k-1取到最大值?最大值为多少?
(3)对于给定的正整数m>1,试写出所有项数不超过2m的对称数列,使得1,2,22…2m-1成为数列中的连续项;当m>1500时,试求其中一个数列的前2008项和S2008

查看答案和解析>>

若函数f(x)=
a
b
a
=(2cosx,cosx+sinx),
b
=(sinx,cosx-sinx)

(1)求f(x)的图象的对称中心坐标和对称轴方程;
(2)若?x∈[0,
π
2
],f(x)<m
,求实数m的取值范围.

查看答案和解析>>

若函数f(x)=a-bsinx的最大值为
3
2
,最小值为-
1
2
,求函数y=1-asinbx的单调区间和周期.

查看答案和解析>>

精英家教网若椭圆E1
x2
a
2
1
+
y2
b
2
1
=1
和椭圆E2
x2
a
2
2
+
y2
b
2
2
=1
满足
a2
a1
=
b2
b1
=m
 (m>0)
,则称这两个椭圆相似,m称为其相似比.
(1)求经过点(2,
6
)
,且与椭圆
x2
4
+
y2
2
=1
相似的椭圆方程;
(2)设过原点的一条射线l分别与(1)中的两个椭圆交于A、B两点(其中点A在线段OB上),
|OA|+
1
|OB|
的最大值和最小值;
(3)对于真命题“过原点的一条射线分别与相似比为2的两个椭圆C1
x2
22
+
y2
(
2
)
2
=1
和C2
x2
42
+
y2
(2
2
)
2
=1
交于A、B两点,P为线段AB上的一点,若|OA|、|OP|、|OB|成等差数列,则点P的轨迹方程为
x2
32
+
y2
(
3
2
2
)
2
=1
”.请用推广或类比的方法提出类似的一个真命题,并给予证明.

查看答案和解析>>


同步练习册答案