题目列表(包括答案和解析)
设A是单位圆x2+y2=1上任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足
当点A在圆上运动时,记点M的轨迹为曲线C。
(1)求曲线C的方程,判断曲线C为何种圆锥曲线,并求其焦点坐标。
(2)过原点斜率为K的直线交曲线C于P,Q两点,其中P在第一象限,且它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的K>0,都有PQ⊥PH?若存在,请说明理由。
①由“若
”类比“若
为三个向量,则
”;②设圆
与坐标轴的4个交点分别为A (x1,0)、B (x2,0)、C (0,y1)、D (0,y2),则
;③在平面内“三角形的两边之和大于第三边”类比在空间中“四面体的任意三个面的面积之和大于第四个面的面积”;④在实数列
中,已知a1 = 0,
,则
的最大值为2.上述四个推理中,得出的结论正确的是_____________(写出所有正确结论的序号).
设A是单位圆
上任意一点,
是过点
与
轴垂直的直线,
是直线
与
轴的交点,点
在直线
上,且满足
,当点
在圆上运动时,记点
的轨迹为曲线
。
(1)求曲线
的方程,判断曲线
为何种圆锥曲线,并求其焦点坐标。
(2)过原点斜率为
的直线交曲线
于
两点,其中
在第一象限,且它在
轴上的射影为点
,直线
交曲线
于另一点
,是否存在
,使得对任意的
,都有
?若存在,请说明理由。
①由“若
”类比“若
为三个向量,则
”;②设圆
与坐标轴的4个交点分别为A (x1,0)、B (x2,0)、C (0,y1)、D (0,y2),则
;③在平面内“三角形的两边之和大于第三边”类比在空间中“四面体的任意三个面的面积之和大于第四个面的面积”;④在实数列
中,已知a1 = 0,
,则
的最大值为2.上述四个推理中,得出的结论正确的是_____________(写出所有正确结论的序号).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com