设与交于点由得 查看更多

 

题目列表(包括答案和解析)

设A是单位圆x2+y2=1上任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足当点A在圆上运动时,记点M的轨迹为曲线C。

(1)求曲线C的方程,判断曲线C为何种圆锥曲线,并求其焦点坐标。

(2)过原点斜率为K的直线交曲线C于P,Q两点,其中P在第一象限,且它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的K>0,都有PQ⊥PH?若存在,请说明理由。

查看答案和解析>>

①由“若”类比“若为三个向量,则”;②设圆与坐标轴的4个交点分别为A (x1,0)、B (x2,0)、C (0,y1)、D (0,y2),则;③在平面内“三角形的两边之和大于第三边”类比在空间中“四面体的任意三个面的面积之和大于第四个面的面积”;④在实数列中,已知a1 = 0,,则的最大值为2.上述四个推理中,得出的结论正确的是_____________(写出所有正确结论的序号).

 

查看答案和解析>>

设A是单位圆上任意一点,是过点轴垂直的直线,是直线轴的交点,点在直线上,且满足,当点在圆上运动时,记点的轨迹为曲线

(1)求曲线的方程,判断曲线为何种圆锥曲线,并求其焦点坐标。

(2)过原点斜率为的直线交曲线两点,其中在第一象限,且它在轴上的射影为点,直线交曲线于另一点,是否存在,使得对任意的,都有?若存在,请说明理由。

 

查看答案和解析>>

①由“若”类比“若为三个向量,则”;②设圆与坐标轴的4个交点分别为A (x1,0)、B (x2,0)、C (0,y1)、D (0,y2),则;③在平面内“三角形的两边之和大于第三边”类比在空间中“四面体的任意三个面的面积之和大于第四个面的面积”;④在实数列中,已知a1 = 0,,则的最大值为2.上述四个推理中,得出的结论正确的是_____________(写出所有正确结论的序号).

查看答案和解析>>

设A是单位圆x2+y2=1上的任意一点,i是过点A与x轴垂直的直线,D是直线i与x轴的交点,点M在直线l上,且满足|DM|=m|DA|(m>0,且m≠1),当点A在圆上运动时,记点M的轨迹为曲线C。
(1)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;
(2)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由。

查看答案和解析>>


同步练习册答案