在(1+x)4+5+6+-+2008的展开式中x4的系数等于 查看更多

 

题目列表(包括答案和解析)

精英家教网已知点A(x1,y1)在圆(x-2)2+y2=4上运动,点A不与(0,0)重合,点B(4,y0)在直线x=4上运动,动点M(x,y)满足
OM
OB
OM
=
AB
.动点M的轨迹C的方程为F(x,y)=0.
(1)试用点M的坐标x,y表示y0,x1,y1
(2)求动点M的轨迹方程F(x,y)=0;
(3)以下给出曲线C的五个方面的性质,请你选择其中的三个方面进行研究,并说明理由.(若你研究的方面多于三个,我们将只对试卷解答中的前三项予以评分)
①对称性;
②顶点坐标(定义:曲线与其对称轴的交点称为该曲线的顶点);
③图形范围;
④渐近线;
⑤对方程F(x,y)=0,当y≥0时,函数y=f(x)的单调性.

查看答案和解析>>

精英家教网直线l:y=k(x-1)过已知椭圆C:
x2
a2
+
y2
b2
=1
经过点(0,
3
),离心率为
1
2
,经过椭圆C的右焦点F的直线l交椭圆于A、B两点,点A、F、B在直线x=4上的射影依次为点D、K、E.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l交y轴于点M,且
MA
AF
MB
BF
,当直线l的倾斜角变化时,探求λ+μ的值是否为定值?若是,求出λ+μ的值,否则,说明理由;
(Ⅲ)连接AE、BD,试探索当直线l的倾斜角变化时,直线AE与BD是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.

查看答案和解析>>

已知函数f(x)=2sinxcosx-
3
cos2x+1
(x∈R).
(I)求f(x)的最小正周期;
(II)求f(x)在区间x∈[
π
4
π
2
]
上的最大值和最小值;
(III)若不等式[f(x)-m]2<4对任意x∈[
π
4
π
2
]
恒成立,求实数m的取值范围.

查看答案和解析>>

已知函数f(x)=2sinxcosx-
3
cos2x+1
(x∈R).
(I)求f(x)的最小正周期;
(II)求f(x)在区间x∈[
π
4
π
2
]
上的最大值和最小值.

查看答案和解析>>

在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=-2的距离等于该点与圆C2上点的距离的最小值.
(Ⅰ)求曲线C1的方程;
(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=-4上运动时,四点A,B,C,D的纵坐标之积为定值.
(Ⅲ)设P(-4,1)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:四点A,B,C,D的纵坐标之积为定值.

查看答案和解析>>

一、选择题

ADBBD  ABBAD

二、填空题

11、        12、          13、C      14、21           15、          16、(-,0)

三、解答题

17、解:(1)    4分

f(x)的最小值为3

所以-a+=3,a=2

f(x)=-2sin(2x+)+5                                  6分

(2)因为(-)变为了(),所以h=,k=-5

由图象变换得=-2sin(2x-)            8分

由2kp+≤2x-≤2kp+    得kp+≤x≤kp+  所以单调增区间为

[kp+, kp+](k∈Z)       13分

18、解:(1)如图,在四棱锥中,

BCAD,从而点D到平面PBC间的距离等于点A

到平面PBC的距离.         2分

∵∠ABC=,∴AB⊥BC,

PA⊥底面ABCD,∴PA⊥BC

BC⊥平面  PAB,                 4分

∴平面PAB⊥平面PBC,交线为PB,

AAEPB,垂足为E,则AE⊥平面PBC,

∴AE的长等于点D到平面PBC的距离.

,∴

即点D到平面PBC的距离为.                 6分

(2)依题意依题意四棱锥P-ABCD的体积为

∴(BC+AD)AB×PA=,∴,                 8分

平面PDC在平面PAB上的射影为PAB,SPAB=,         10分

PC=,PD=,DC=,SPDC=a2,           12分

设平面PDC和平面PAB所成二面角为q,则cosq==

q=arccos.    13分

19、解:(1)从10 道不同的题目中不放回地随机抽取3次,每次只抽取1道题,抽法总数为只有第一次抽到艺术类数目的抽法总数为

                                   5分

(2)抽到体育类题目的可能取值为0,1,2,3则

    

的分布列为

0

1

2

3

 

P

10分

                         11分

从而有                   13分

20、解:(1)设在公共点处的切线相同

                         1分

由题意知       ,∴    3分

得,,或(舍去)

即有                                        5分

(2)设在公共点处的切线相同

由题意知    ,∴

得,,或(舍去)      7分

即有            8分

,则,于是

,即时,

,即时,                 11分

的最大值为,故的最大值为   13分

21、解:(1)∵且|PF1|+|PF2|=2a>|F1F2|(a>)

∴P的轨迹为以F1、F2为焦点的椭圆E,可设E:(其中b2=a2-5)    2分

在△PF1F2中,由余弦定理得

∴当且仅当| PF1 |=| PF2 |时,| PF1 |?| PF2 |取最大值,         4分

此时cos∠F1PF2取最小值

令=a2=9

∵c ∴b2=4故所求P的轨迹方程为           6分

(2)设N(st),M(xy),则由,可得(xy-3)=λ(st-3)

x=λs,y=3+λ(t-3)           7分

而M、N在动点P的轨迹上,故且

消去S得解得        10分

又| t |≤2,∴,解得,故λ的取值范围是[,5]      12分

22、解:(1)由,得,代入,得

整理,得,从而有

是首项为1,公差为1的等差数列,.          4分

(2), 

.                  8分

(3)∵

.

由(2)知

.     12分

 


同步练习册答案