解:=sinx+.故f(x)的周期为2kπ{k∈Z且k≠0}. 查看更多

 

题目列表(包括答案和解析)

(2013•崇明县二模)已知函数f(x)=sinx+acos2
x
2
(a为常数,a∈R),且x=
π
2
是方程f(x)=0的解.当x∈[0,π]时,函数f(x)值域为
[-2,
2
-1]
[-2,
2
-1]

查看答案和解析>>

给出下列命题:
①不等式
1
x
≥2
的解集是{x|x≤
1
2
}

②若α,β是第一象限角,且α>β,则sinα>sinβ;
tan20°+tan40°+
3
tan20°tan40°=
3

④f(x)=2sin(3x+1)的图象可由y=2sin3x的图象向左平移1个单位得到;
⑤函数f(x)=
cos2x
cosx-sinx
的值域是(-
2
2
)

其中正确的命题的序号是
③⑤
③⑤
(要求写出所有正确命题的序号).

查看答案和解析>>

阅读不等式5x≥4x+1的解法:
解:由5x≥4x+1,两边同除以5x可得1≥(
4
5
)x+(
1
5
)x

由于0<
1
5
4
5
<1
,显然函数f(x)=(
4
5
x+(
1
5
x在R上为单调减函数,
f(1)=
4
5
+
1
5
=1
,故当x>1时,有f(x)=(
4
5
x+(
1
5
x<f(x)=1
所以不等式的解集为{x|x≥1}.
利用解此不等式的方法解决以下问题:
(1)解不等式:9x>5x+4x
(2)证明:方程5x+12x=13x有唯一解,并求出该解.

查看答案和解析>>

下列命题中正确的是(  )
①存在实数α,使等式sinα+cosα=
3
2
成立;
②函数f(x)=tanx有无数个零点;
③函数y=sin(
3
2
π+x)
是偶函数;
④方程tanx=
1
3
的解集是{x|x=2kπ+arctan
1
3
,k∈Z}

⑤把函数f(x)=2sin2x的图象沿x轴方向向左平移
π
6
个单位后,得到的函数解析式可以表示成f(x)=2sin(2x+
π
6
);
⑥在同一坐标系中,函数y=sinx的图象和函数y=x的图象只有1个公共点.

查看答案和解析>>

已知函数f(x)=-sinx+1
(1)用五点法画出函数在区间[0,2π]上的简图;
(2)求f(x)在[0,2π]上的单调区间.
(3)解不等式f(x)<
12

查看答案和解析>>


同步练习册答案